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Fractional derivative models, which are used to describe the viscoelastic behavior of material,
have received considerable attention. Thus it is necessary to put forward the analysis solutions
of dynamic systems containing a fractional derivative. Although previously reported such kind
of fractional calculus-based constitutive models, it only handles the particularity of rational
number in part, has great limitation by reason of only handling with particular rational number
field. Simultaneously, the former study has great unreliability by reason of using the comple-
mentary error function which can’t ensure uniform real number. In this paper, a new approach
is proposed for an analytical scheme for dynamic system of a spring-mass-damper system of
single-degree of freedom under general forcing conditions, whose damping is described by a
fractional derivative of the order 0< @< which can be both irrational number and rational
number. The new approach combines the fractional Green’s function and Laplace transform of
fractional derivative. Analytical examples of dynamic system under general forcing conditions
obtained by means of this approach verify the feasibility very well with much higher reliability
and universality.
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1. Introduction

In the present study, the distribution of frac-
tional derivative models, which are used to de-
scribe the viscoelastic behavior of materials, has
received considerable attention (Agrawal, 2001 ;
Bagley and Torvik, 1983; Elshehawey et al., 2001 ;
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Enelund and Josefson, 1997 ; Enelund et al., 1999
Ingman and Suzdalnitsky, 2001). The use of frac-
tional calculus-based constitutive models is mo-
tivated in large range by the fact that fractional
derivative models describe the frequency depen-
dence of the structural damping characteristics
quite remarkably (Agrawal, 2001 ; Enelund et al.,
1999), and fewer parameters are required to rep-
resent the material viscoelastic behavior, as com-
pared to those required when using traditional
Kelvin and Maxwell-based models (Bagley and
Torvik, 1983 ; Enelund et al., 1999).

Several authors have applied such types of
fractional calculus-based constitutive models to
model the dynamic behavior of the dynamic sys-
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tem with viscoelastic damping. For example, frac-
tional operators that have been applied to the an-
alysis of damped vibrations of viscoelastic single-
mass systems is reported (Rossikhin and Shitikova,
1997). Similarly a time-domain finite-element an-
alysis of fractionally damped viscoelastic struc-
tures is also reported (Enelund and Josefson,
1997). In addition, the motion of an N-degree-
of-freedom system is analyzed (Ingman and
Suzdalnitsky, 2001). However, for the dynamic
systems based on fractional calculus, it is difficult
to obtain the analysis solutions due to the exist-
ence of the fractional derivative terms in motion
equations. Regarding the analysis solution of
Eq. (1), Elshehawey obtained an exact solution
for @¢=1/2 (Elshehawey et al., 2001). Agrawal
analyzed the fractional Green’s function, for 0<
a/b<2, a, b are integers by using the method
reported by Miller (Miller, 1993). However, it
seems quite difficult to obtain the analysis solu-
tions when is an irrational number. Unfortunate-
ly, the analysis solutions appear contradictory
(Elshehawey et al., 2001) when using the com-
plementary error function Erfc (—A:/# ), where
(—A+/t ) must be real. Since the roots of a
fourth order algebra equation, A;, =1, 2, 3, 4
are not easy to be real numbers simultaneously
in most cases. Once the variable (—A;y/7 ) is not
real, the function Erfc —(A:v/'f ), seems to have
no meaning. Therefore, in fact the analysis solu-
tions are unreliable (Elshehawey et al., 2001).
In the present study, a scheme for analysis the
solution of a single-degree-of-freedom spring-
mass-damper system whose damping is presented
by a fractional derivative of the order 0<a<1
which can be both irrational numbers and ration-
al is presented and discussed. The more extensive
application range ensures the universality of this
approach. According to the Laplace transform of
fractional derivative, the fractional Green’s func-
tion and the Duhamel-integral-type closed-form
expression for the response of the system is ob-
tained initially. Inverse Laplace transform and
Taylor expansion theory are then used to obtain
the expressions of fractional Green’s function and
its derivatives. The above methods, which are

applied to the new approach, ensure the reliabi-
lity of analysis solution. Thus, the responses un-
der general forcing condition are analyzed, and
the analytical expressions are obtained. Cases are
also presented in order to verify the present tech-
nique and display the behavior of the responses of
the fractional damping system.

2. Fractional Dynamic Model
and General Solution

Consider the viscoelastic behavior of a single~
degree-of-freedom oscillator, which includes a
discrete mass and a viscoelastic spring, and is
governed by fractional calculus law. In combina-
tion with Newton’s second law, the equation of
motion can be given as (Enelund et al., 1999 :
Ingman and Suzdalnitsky, 2001),

mD?y (t) +cD% (¢) +ky(t) =1 (1)

y(©) =30 3(0) = v

where m, ¢, k, represent the mass, damping, and
stiffness coefficients, respectively, f (#) is the ex-
ternally applied force. Accordingly, the viscous-
damping term in these equations is replaced by
cD?y(t), which is proportional to the @-order
derivative of the displacement. As for the frac-
tional a-order derivative of the function y(f),
using the extended Riemann-Liouville definition
(Enelund et al., 1999 ; Oldham and Spanier, 1974 ;
Samko, 1993 ; Xu and Tan, 2001), the equation
can be written as

Dy (t)=

! d’ ‘/O’t(t—z')”"’"ly(r)dr

T(n=8) dt" (2)
0<n—pB<1

where # is an integer. In the time domain, the
presence of integro-differential operators make
the computation of the structural equations more
complicated than that of using the ordinary op-
erators. Fortunately, by using the Laplace trans-
form in the frequency domain, the model becomes
much easier to handle (Enelund et al.,, 1999).
Hence, the Laplace transform is defined as

F&=Lly0)=["yeat 3
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However, for the ordinary fractional order de-
rivative, the equations are generalized as (Oldham,
and Spanier, 1974),

(D2 (1) |=s5() = D450 (@

where # is an ‘integer such that n—1<A<#n
When 0< 8<1, Eq. (4) can be rewritten as
L[D*y(t)1=s"5(s) —D"*'y(0)

Compared with Eq. (1), the term D?'y(0) is in
fact a fractional integration and vanishes for any
reasonable y(¢), which satisfies the motion equa-
tion of Eq. (1), then by substituting Eq. (1) into
above formula, Eq. (5) is obtained as below,

L[Dfy(8)]1=55(s) (5)

Applying the Laplace transform Eqgs.(4) and (5)
to Eq. (1) alternatively, leads to

(ms?+cs®+ k) 5(s) =F(s) +smyo+my. (6)
ie.
F(5)=G () () +G(s) smyot+G(s) my (7)
where
G(s)=1/(ms*+cs®+k)

By using the inverse Laplace transform of Eq.
(7), the following generalized equation is pre-
sented as

v(t) =myoG (t) + my,G(0) 6 (¢)

tmnG0)+ [‘Gl-nswar

where Green’s function G(#) is the inverse La-
place transform of G(s), and &(¢#) is &-func-
tion. The differentiative coefficient of 6(¢) and
_l G(t=1)f(t)drin Eq.(8) are given in Ap-
pendix (Egs.(al)). Differentiating Eq. (8) with
respect to time and using the properties of the
Green’s function, Eq. (9) can be expressed as

y(8) =myoG (1) +myG(0) 8 (2) + my G ()

OGO+ [Cu-nrwar ¥

3. Expression for the Fractional
Green’s Function

In order to verify the responses of Egs. (8) and
(9), the fractional Green’s function G(¢) and its

derivatives G, G must be determined. Here, for
any 0<@<1 and m=*0, ¢, k, the expression of
the solution can be represented in analytical form.

The Laplace transform of fractional Green’s
function G(¢) is given by

= _ 1
Gls)= ms*+cs®+k (10)
If k=0, it gives
Gl =
1 s@o-2 (11)

“m s c/m

Taking the inverse Laplace transform of Eq. (11),
the expression is given by

Gt =itE2_a,Z< ——fn—tz‘“> (12)

where, the inverse Laplace transforms are given in
terms of the generalized Mittag-Leffler function
(Miller, 1993 ; Oldham and Spanier, 1974), which
is defined by the power series. The power series in
Egs. (12) and (13) are given in Appendix (Egs.
(a2)).
The below inverse transform is defined as,
o jls®® — pWHb=I ) (_ ga
L™ raym=t &b (—A2°) (13)
Re(s) >| Ve

At present, focus on the M-L function and the
recognition of its importance have remarkably
increased from an analytical standpoints to the
description of fractional-order control systems
and fractional viscoelastic models. Their defini-
tion and properties are now available in cur-
rently published books and surveys concerning
about fractional calculus, integral and differential
equations, mechanics, and etc (Agrawal,- 2001 ;
Elshehawey et al., 2001 ; Narahar et al., 2001 ; Xu
and Tan, 2001).

If

ks
k#0, = m s +c/m
Eq. (10) can be integrated

i 1 _1 7
G(S)_msz+cs“+k E1+7p

Defined as

r=|s|=,/ Re(s)*+Im(s)?
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for any m>0, ¢+0, k<0, when Re(s)=£&=

<_____m+| hald )ﬁ results in
m *
1
7’25=( m+|;’l+lk’>2—a

The | 7] of 7 in Eq. (14) is given in Appendix
(Egs.{(a3)).

Then, for Re(s) =&, the equation is obtained
as

G() 1 _1 7 1)'2( l)n”nﬂ
metes'tk R 1+7 kah
40 b\ gty
20 g 09
| & k n+l SZ—a—(2+an)
?g( " (m) (¥4 c/m)™!

Considering Eq. (13), when Re(s) =max (&, | ¢/
m|V® D) =£, the inversion of Eq. (15) in terms
of the linear property of Laplace transform can be
expressed as

S n k' (2-a)n+2+any—1 py(n) C o-a
G} =25 (1) —n_Ht Ez—a,zwn("—t )
n=0 m m
to P c (16)
=§0(—1> s PR 0 ”<_%tz-a>
where

Eéf)a,2+an< _%ﬁ—a)

_s=mGtml ey oo
=& (=50 T(G—djiint2)
ie.
:+m+m yned (n+])'k"c” t2n+(2—a)j+l
Gl =BV e T(a-gjtmty (7

Differentiating Eq. (16) with respect to time, the
derivative can be written as :
R N P I i

O =20 o T(a-a 4

t2n+(2—a)j

(18)

Similarly, the equation is denoted as,

o _+oo +o0 e <n+]')!k”(,’j t2n+(2—a)j—l
G“)_Eo;:(uzn*e( B nlilm™ 7 P((2—a)j+2n) (19)

Substituting #=0 into Eqs.(17), (18) and (19)

results in

GO=0, GO =1 CO=0 (0

Then the responses of displacement and velocity

in Eq. (8) and (9) can be represented as

y(t)—myoG'( )+my1G(t)
+[cl—0s(0)de (21)

v () =myeG () + mnG(¢)
(22)

+'/O.tG'(t—r)f(r)a’z

The above equations, which represent general
analysis solutions for the displacement and ve-
locity in Eq. {1) corresponding to the fractional
derivative, are similar to the Duhamel integral
solution for a linear system.

4. Application Analysis of Vibration
under Different Forcing Conditions

A dynamic system is often subjected to some
type of external force or excitation. It may be
harmonic, non-harmonic but periodic, non-peri-
odic, or random in nature. In this part, the dy-
namic response of a single degree of freedom
system under different kinds of excitations is re-
presented. For simplicity, the following discussed
cases will be all based on zero initial conditions.
In order to obtain the analysis solution, the fol-
lowing integral formulae will be used as

‘gt(t—r)icos(wr)dr

CPF(1, 14 1/28, 3/241/2€, —1/480P)
- _ 1+&
fot(t—r)esin(wr)dz'

_t*P0F (1, 2+41/2€, 3/2+1/2¢,
(E+1) (€+2)

HHF(1L, 2+€ o ln(h) )
1+

(23)

—1/ag®) (29

f (t—17) he dr= (25)

where, F'(u, w, z) is the generalized hyper-geo-
metric function (Slater, 1966) which is defined by

F(u, w, z) =;F (w1, Uz, *-; w1, we, ~**; 2)

sz- (ui+ é’) ¢

&= T'(u) ~ (26)
_;go ! (U)i+§) §
=T (wi) ’

where j and [ are the number of terms in vectors
u and w, respectively.
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Shown as below, the approach is applied to
some detailed dynamic systems under different
forcing conditions.

4.1 Response under exponential force
If the forcing function is given by 7 (¢} =h
the responses of the motion becomes

()= [ G(t=0) hr*dr (27)

vt+6

y(0)= [ C(t—2) w72 (28)

Substituting Eqgs. (17) and (18) into Egs. (27)
and (28), respectively, results in Eq. (29) as be-
low

y(b) =fG(t—r) B™dr

'[ ! ( (- 2.) 2+ (2-a)i+) hwﬁ df

IRt P ULl
_I§7j§7( ! alilw™ i T{(2-a)j+2n+2) (29)
_§+Z°° _) ()RS £ (y, 0y In(h) 1)
b= wlm™* T{(2-a)j+2n+3)
where, similarly, the equation is given by
t,
) =[ Gli=d)iar
G5y [ (=i o)
At wlflm™ 1 T((Q-a)j+2n+2) 30
T (nt7) £ £ 9HE (0 In(h) 1)
) wljlm™ ¥ T{Q2~a)j+2n42)

where, =1, 7.=2+(2n+(2—a)j).

Figure 1 illustrates the responses, y(#) and
v (#), under existing force f (#) =& for k=400,
¢c=20, a=n/4 and v=—6, —3, —2, —1, 0, 0.5
and 1 for different lines.

%107

Displaczment

a 0.2 0.4 0% a8 1
Time

(a) Displacement

4.2 Response under general forcing condi-
tions

Considering the response of the system under
an arbitrary smooth external force, ¢(x) and ¢
(x) are regarded as the orthogonal scaling and
wavelet functions (Suarez and Shokooh, 1997 ;
Sweldens and Piessens, 1994 ; Wang and Zhou,
1998 ; Wang, 2001 ; Wim, 1995). Here, f (x) is a
smooth L*R function in the form of f(x) and
is square integrable. Defining Py, Q; to be pro-
ject operators, then equation can obtained,

f () =P (1) + 5@ ()

too o0 +oo (3 1)

=i=2_00n,i,¢n,i(x) +§i§mdj,i¢j,i(x)
The coefficients ¢z,i, dji, $nir ¥5: in Eq. (31) is
given in Appendix (Eq. (a4)).

According to the theory of multi-resolution
analysis (Sweldens and Piessens, 1994; Wang,
2001), the two project operators of P,, @; have
the following relationship

Qi=P.—PF

Coiflets have been shown to be excellent for
the sampling approximation of smooth functions
(Sweldens and Piessens, 1994 ; Wang, 2001 ; Wim,
1995). According to the character of Coiflets
(Sweldens and Piessens, 1994 ; Wim, 1995) and
the assumption of ¢ (x) ={0, 3N —1], the wavelet
function and scaling function can be constructed
by the coefficients of Table | (Wang, 2001), using
the two scale relation as below,

004

0.031

G.02F

.01

Veloeily

i

-Gt

-0 02}

0 %] ¥ OE bE 1
Time

(b) Velocity

Fig. 1 Dependence of single-degree-of-freedom system response on the coefficient v under force f(¢) =&
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Table 1 Coiflets filter coefficients for N=2, 4 and 6

k N=2(M,=4) N=4(M,=4) N=6(M,=7)

0 5.456145913796356e—002 1.689380907695821e—003 —2.392638657280051e —003
1 —1.795614591379636e —001 —1.816639282073453e—002 —4.932601854180402¢e—003
2 —1.091229182759271e—001 3.507862062605389¢ — 002 2.714039971139949¢ —002
3 8.591229182759271e—001 7.074394036809258e —002 3.064755594619984e —002
4 1.054561459137964e+000 —2.19708291581174%9e —001 —1.393102370707997e — 001
5 3.204385408620364e — 001 —1.013118304071172e—001 —8.060653071779983e — 002
6 i 8.067593419102440e—001 6.459945432939942¢ —001
7 1.061135780078056¢ 4000 1.116266213257999¢+000
8 3.968448038803485¢—001 5.381890557079980e —

9 —1.047986487449172¢— 002 —9.961543386239989¢ — 002
10 —2.066385574316280e—002 —7.992313943479994e — 002
11 —1.921632058008399¢ —003 5.149146293240031e—002
12 1.238869565706006e —002
13 —1.583178039255944¢ —002
14 —2.717178600539990e — 003
15 2.886948664020020e — 003
16 6.304993947079994e — 004
17 —3.058339735960013e —004

I/ (x) = Paf (x) o< O (27) (36)

(x) =3:V2=_:ak¢<zx —k) (32)

where g, £=0, 1, .-, 3N —1, are the filter co-

efficients, it yields
[Towar=1, [t a
[T ey dt=o

where 1<7<N—1, 0<N—1, then the equation
is given by

enn= [ 7 6) nale) dieareg (KEIRY (3)

1) dt=0,
(33)

with a degree of accuracy of N—1. Combining
Eq.s (32) and (33) they yields

) =P )= 8 (B g2ty (39)

where

£ (x)=Hlm P.f (x)

n—co

Such an approach of apf)roximation is attractive
due to its simplicity and the high degree of accu-
racy of N—1. Moreover, if it has f (x) EC?, y<
N —1, the precision of approximation in Eq. (35)
subsequently becomes (Sweldens and Piessens,
1994 ; Wim, 1995)

Assumed that the external force f(¢) is smooth
enough at the initial point #=0, define xp,0(A),
%01 (A, 210(A), 111 (), x00(A) and g(A, 1), g (A, £).

2004, %01 (A, 200(A), 211(A), 200(A) and g (4,
1), g:(A, ¢) in Eqgs. (36) ~ (42) are given in Ap-
pendix (Egs. (a5)).

For almost all reasonable finite functions, it’s
defined as g(A, 1) Ao.n(8) EL*(R) and g: (A, t)
Aon(2) EL*R for any A<t, where xon(f) is
defined as '

1t=[0, T]

X[o,n(l‘)={0te(_

0) U(T, )
Simultaneously

94, D aon(8) xPilg(A t)yon(D)]
i+ it M I
- Z < 2 >A[c,r](—'>®(2t l)(

=) 2

=So(i o e-i+m)

37)

ol uon(B) 2 Palgd, £) (8]
) AR AV
2 g;(/l, Y )A[O.T}<—‘)® (2t l)(

i 4

=§)9A</\, ?>® (Vt~i+ M)

38)
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In general, the multi-resolution analysis theory
states that

g4 t)=1im Pg(4 1), t€[0, TT  (39)
oA t) =lim Pg(4 1), t€[0, T]  (40)

However, Egs. (37) and (38) are not used for prac-
tical computing, because wavelets can effectively
detect singularities and the possible presence of
artificial discontinuities at the end points, 0 and
T which are likely to introduce significant errors.

Thus, the following equations are used, which
are based on the definition of Egs. (35) and (36),
to approximate g and g, as expressed

g4 t) 20, 7] (8)

= i+ M e (41)
~i=§3N g</1, T)@ (27t —12) wony ()
9 lA, £) xo,n (8)

L) ) . . 42
zi=1z—:3N '1(/1’ ngwl>®(zjt‘2)ﬂ°’ﬂ(t) “

Therefore, the final solutions of y(#) and v(#)
can be obtained.

v () =myoG(t) + mnG(t)
+/0.tG(t—z')f(r) dr

y(8) =myeG () + mnG (1)
+f0tG(t—r)f(r) dr

The detailed calculation and reasoning of Egs.

a9 T 7 ¥
LR
0.7
(iR 4

GSr

)

R
4.3

0.2

! k J Ar[\‘h%'{“"é

[ 0.5 K 25 3

(a) Force; f(t) =10"*In(#?+3)sin(47¢)®

(43) and (44) is given in Appendix (Egs. (a6)).

Figure 2 highlights the comparison between the
analysis solution and wavelet sg}ultion obtained
by ¥ () =myG () +mn G () -I-i:lE_]sNg(t,%%)
[0l @it—i) @l (=], t=[0, T] appeared in
Appendix (Egs. (a6) ), for k=400, c=20, a=nr/
4 and f(t) =e~® and scale j=4, 6, which illus-
trate the efficiency of wavelet approximation. Tt
can be observed that even small scale j can make
high precision.

Applying the exciting force f (£)=10"*In(#*+3)
sin(4xt)®, as shown in Fig. 3(a), and using the
Coiflets with N=18, M;=7 Fig. 3(b) shows the
response for k=100, ¢c=40 and a=n/4, n/6, n/
15 scale 7=10. When the exciting force becomes
f(#)=2""In(#*+7/10)sin(107¢)® as also shown
in Fig. 4(a), and using the Coiflets with N=18,

—— Analysis Solution
7 j=6
Q=4

Dispacement

0.2 0.4 0.6 0.8 1
Time

Fig. 2 Comparison between the analysis solution
and the wavelet solutions

Displocement

o 52 R¥] oY 5B d
Time

(b) Displacement

Fig. 3 Dependence of single-degree-of-freedom system response on the scale of the scaling function
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0 0i2 04 . a6 0.8 1

(a) Force, f(#) =2"* In(#2+7/10)sin(107¢)°

Displacemsnt

o Q.2 04 0.4 o8 1
Timea

(b) Displacement

Fig. 4 Dependence of single~degree-of-freedom system response on the scale of the scaling function

My=7 finally Fig. 4(b) also illustrates the re-
sponse for =100, c=40, a=7m/4 and scale j=
5, 6, 8.

5. Conclusions

This approach is based on the Laplace trans-
form, fractional Green’s function and inverse
Laplace transform. The deductive principle and
procedure is presented.

By means of the new approach, the analysis
solutions of a dynamic system of a spring-mass-
damper system of single-degree of freedom under
general forcing conditions, whose damping is
described by a fractional derivative of any order
a, 0<a<1, with both irrational and rational
fractional values are accomplished. By contrast
in studies reported earlier, the previous methods
can only obtain a limited number of analysis
solutions when the fractional orders are rational,
but simultaneously have great unreliability. The
solution, which is obtained with the help of the
new approach, is extremely reliable and can be
universally applied.

Moreover, the dynamic models are established
with confirmative solutions. The cases of analysis
solutions derived from the dynamic systems under
general forcing conditions accurately verify the
feasibility very well. Furthermore, from these cases,
changes in the order of the damping differential
operators @ or the damping coefficient ¢, corre-
sponding to the change of the proportion between

the viscous and elastic properties of the material,
are revealed.
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Appendix

The differentiative coefficient of &(#) and

[fa-or

7)drin Eq. (8) are given by:

s="2-s0)
—g;[/tG(t—r)f(t)dr} (al)
=f(0GO) + [ Cli—0) f(Dde

The power series appeared in Egs. (12) and (13)
are defined as below :

{

Eos(2)= g—(m‘ a>0, >0

E, ( )_-d_]_E »(2) (a2)
dz " *
S Ul L,

T& N Malta+b)
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The | 7| of 7 appeared in Eq.(14) is given as
below :

lril=‘—k;—————s_a ‘
m s +c/m
= 1 S. 2 1 a i
|s®m/k+s%c/k| 1 | s*m/k|—|s%/ k]
_ 1 '
e m/ ki~ c/RY) l (a3)

1

= E@ m/| k=1 c/ED

= 1 a
|<m+|;l+|kl)m(l+m/lkl)

<1

The coefficients cn,i, dii, Gnin ¥5: in Eq. (31) is
given by :

+°='f (%) P, () dx

Cn,i=

dj,iz_/_.:wf(x) ¥5:(x) dx (a4)
Pnilx) =2"2¢(2"x —1)
Ui (x) =224 (2x —1)
The équations of x00(A), 201 (A, x10(A), 211,

x00{A) and g(A, 1), ga(A, ) appeared in Egs.
(36) ~ (42) are given by :

200(A) =[f (A—1) G(#) 11=0=1 (D) G(0)
1D ={ 2 - 60}

=f(A) G(0) =7 (A G(0)
)Co,z(/D ={ atz [f ﬂ f ]}M)

=/ 2f —f (N G(0)
}ao )=[f ]:-o*f(/l G O

211 (4 { FQA—=8 G ]} —
=f A)G (o) —F (A G(0)

and then defining g(A, ¢), g:(4, £) as shown

below
FA=8)G(¢) t=(0, )
gld B = %mz(ﬂ) 24 12 (A) £+ 100 1€ (8, 0)
0 te (o0, §) (a5)
FA-0GE  tE(0, infty)
ald )= 11 (A) £+ x00 te(s, 0)
0 te (o, §)

where
8=(1—3N) /2"

# is the scale of scaling functions which is used to
approximate g and gi.

The final solutions of ¥ (¢) and y(¢) appeared
in Eqs. (43) and (44) are given by:

+/ Glt—1)f
+f Glr
=mnG(t) +mnG(t) +/g t, 1) dr
=mpG(t) +mylG(t)

+§g(t )f (Pr—i+M)dr
~myG (t) +mynG(t)

+:Z!g<t—)[®f @t-i+ M) -0l (M~1)],
telo, T1

y()=mnG () +mnG

= myoG +mnG

or
y (1) =myG(t) +my (1)
+ 3 ot M0l it-0-0S (-],

o tefo, T]
9 D a0 (H) *BLg(A, £) xon ()]
U W e L
5(0) =myC (B +mnC(0)+ [ Clt-0f (1) dr
=myG(t) +myG( +/ et 0d
=myG )+mylG() (a6)

+th(t )/ ZJT Z+M1)d
~myoG t)+mylG(t)
+2 gt(f )/ O (Pr—i+M)dr
or
(O =myG () +muG(+ B g, M)
(o) (t—1) -2/ ()], te]o, T]
where

@f(x)=f0x®(z>dz

which can be obtained by the wavelet approxi-
mations methods (Wang, 2001).



