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A FRACTIONAL-ORDER TUMOR GROWTH INHIBITION

MODEL IN PKPD
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Abstract. Many compartment models assume a kinetically homogeneous

amount of materials that have well-stirred compartments. However, based

on observations from such processes, they have been heuristically fitted by
exponential or gamma distributions even though biological media are inho-

mogeneous in real environments. Fractional differential equations using a

specific kernel in Pharmacokinetic/Pharmacodynamic (PKPD) model are
recently introduced to account for abnormal drug disposition. We discuss

a tumor growth inhibition (TGI) model using fractional-order derivative

from it. This represents a tumor growth delay by cytotoxic agents and
additionally show variations in the equilibrium points by the change of

fractional order. The result indicates that the equilibrium depends on the
tumor size as well as a change of the fractional order. We find that the

smaller the fractional order, the smaller the equilibrium value. However, a

difference of them is the number of concavities and this indicates that TGI
over time profile for fitting or prediction should be determined properly ei-

ther fractional order or tumor sizes according to the number of concavities

shown in experimental data.

Received December 16, 2019; Accepted January 20, 2020.

2010 Mathematics Subject Classification. 92C55, 26A33, 34K37 .
Key words and phrases. Pharmacokinetics and pharmacodynamics (PKPD), Fractional

differential equation (FDE), Emax model, Anomalous kinetic, Fractional-order tumor growth

inhibition (FTGI), Fractional calculus .
This work was financially supported by the National Research Foundation of Korea (NRF)

grant funded by the Korea government (MSIT) (NRF-2019R1A2C2007249).

c©2020 The Youngnam Mathematical Society
(pISSN 1226-6973, eISSN 2287-2833)

81



82 J. H. BYUN AND I. H. JUNG

Introduction

A compartment model [1] is a sys-
tem of ODEs that consists of a finite
number of compartments, each of which
is homogeneous and well mixed. The
coupled terms in ODEs interact among
themselves using constant rates. Un-
like normal diffusion by Fick’s law, over
the past few decades, strong experi-
mental evidence has indicates that there
exists super-diffusion or sub-diffusion
[2]. Moreover, anomalous kinetics can
also result from reaction-limited pro-
cesses and long-time trapping. It is
considered that anomalous kinetics in-
troduces memory effects to the process
[1], yielding age-structured integrodif-
ferential equations [3, 4].

Interest in the fractional-order de-
rivative has also increased in the area
of PKPD [5–7]. Copot et al. [8] pre-
sented a fractional-order PKPD model
for propofol diffusion and showed fit-
ting via data. Toledo-Hernandez et al.
[7] described the phenomenon associ-
ated with parameter fitting to the anoma-
lous data of tequila using the fermen-
tation process. Dokoumetzidis et al.
[6] reported that some fractional-order
models [9] are not consistent systems of
equations, and discussed how to satisfy
the law of conservation of mass [10].
Then, multi-compartment systems [5,
11] were introduced in order to explain
drug absorption and the disposition pro-
cess to solve the consistent problem.

Despite the presence of many stud-
ies that are related to FDEs [7, 8, 10,
12], which partially describe the PKPD
phenomena in terms of the drug dispo-
sition and the drug effect, to the best
of our knowledge, there are no models

that consider the fractional-order tu-
mor growth inhibition (FTGI). In this
work, we obtain the drug concentra-
tion using a drug disposition model,
derive the appropriate effect function,
and construct the FTGI model. We in-
vestigated the tumor decline phenom-
enon that elapsed after sufficient time
had elapsed, and which could not be
explained in the ODE model. In addi-
tion, the TGI system of ODEs requires
unknown additional compartments to
express the memory effect using linear
tricks [13, 14], but not in the FTGI
model. The differences in the equilib-
rium points and maximum tumor size
between the FTGI and the ODE model
with logistic growth and a number of
inflection points that are dependent on
the fractional order will be investigated.

We introduce a fractional drug dis-
position model, derive an Emax model
mathematically, and substitute it into
the FTGI model using Caputo deriv-
ative. Simulation results of the differ-
ence between the fractional order and
the maximum tumor size are then ex-
plored. In addition, a suitable range of
the fractional order should be chosen
according to the concavity. Finally, we
discuss the FTGI model..

A drug disposition model with a
fractional-order derivative

We start with well-known drug dis-
position models [1, 8] as follows.


dq1
dt = −(k01 + k12 + k1e)q1 + k21q2
dq2
dt = k12q1 − (k02 + k21)q2
dqe
dt = k1eq1 − k0eqe,

where Vi, i = 1, 2, e, is the volume in
i compartment and cli, i = 1, 2, e, is
the clearance in i compartment, and
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Figure 1. Drug dispo-

sition model

qi, i = 1, 2, e, denotes the amount of a
drug in i compartment. C1(t) = q1/V1

is drug concentration in central com-
partment at t with unit nM , C2(t) =
q2/V2 is concentration in peripheral com-
partment at t, Ce(t) = qe/Ve is con-
centration in effect compartment at t.
Constant rates k12 and k21 are inter-
compartment rate constant with unit
rate time−1 and k01 = cl1/V1, k02 =
cl2/V2 and k0e = cle/Ve are elimina-
tion rate constant with unit rate time−1.
k1e is transfer rate constant for repre-
senting delay with unit rate time−1.
Thus,

dC1

dt = −(k01 + k12 + k1e)C1 + k21C2,
dC2

dt = k12C1 − (k02 + k21)C2,
dCe
dt = k1eC1 − k0eCe.

(1)
If we do not consider effect compart-

ment and
consider mass transfer integrals con-

taining a specific kernel to represent
a memory effect: G12(t, τ), G21(t, τ),
G10(t, τ), and G20(t, τ).
Assuming that

Gij(t, τ) = (t−τ)αij−1

Γ(αij)
, i = 1, 2,

j = 0, 1, 2, 0 < αij ≤ 1.

Taking the first derivative of the above
equations we end up with FDEs with

Riemann-Liouville

dC1(t)
dt = −k01 · 0D1−α10

t C1(t)− k12·
0D

1−α12
t C1(t) + k21 · 0D1−α21

t C2(t),

dC2(t)
dt = k12 · 0D1−α12

t C1(t)− k02·
0D

1−α20
t C2(t)− k21 · 0D1−α21

t C2(t).

Since RL is not practical due to frac-
tional initial values, we should change
them into Caputo derivative that ap-
pears with the following expression [15].

0D
1−α
t f(t) = D1−αf(t) +

f(0)tα−1

Γ(α)
.

The fractional drug disposition model
from Eq.(1) with the initial value C1(0)=
C0(> 0) and C2(0) = 0 are given by

dC1(t)
dt = −k01D

1−α10C1(t)− k12·
D1−α12C1(t) + k21D

1−α21C2(t)−
k01

C0t
(α10−1)

Γ(α10) − k12
C0t

(α12−1)

Γ(α12) ,
dC2(t)
dt = k12D

1−α12C1(t)− k02·
D1−α20C2(t)− k21D

1−α21C2(t)+

k12
C0t

(α12−1)

Γ(α12) ,

(2)
where unit of the kij rate constants are
timeαij .

Emax and fractional-order TGI
model

An Emax function, E(t), is a de-
scription of drug effect over concentra-
tion [16]. E(t) explains a dose-response
curve governing binding of drug to an
antigen by the law of mass action. Bi-
ological drug response reaches a maxi-
mum Emax similar to Michaelis-Menten
equation[17]. The Emax model for in-
hibition by drug[18, 19] is usually given
by

E(t) = η
(
E0 −

Emaxc
γ

ICγ50 + cγ

)
,
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where E0 is base drug concentration,
Emax is maximum effect, IC50 is a con-
centration when the effect of the con-
centration reaches Emax/2, η is a pos-
itive constant, and Hill coefficient γ is
a cooperative coefficient or sigmoid co-
efficient.

Assume that the tumor growth with-
out injecting a drug is a logistic, and
consider how the tumor volume is re-
duced by the effect function E(t) us-
ing the linear death (elimination) rate
(q2). We first present well known TGI
models [20]. Particularly, logistic growth
(1 − T/Tmax) [21] is used instead of
exponential growth in [20] to consider
finite equilibrium in a long time.

dT
dt = q1ET

(
1− T

Tmax

)
− q2T,

(3)
or

dT
dt = kT

(
1− T

Tmax

)
−MnT

dM1

dt = 1
τ1

(E −M1)
dMi

dt = 1
τi

(Mi−1 −Mi),

(4)
where T is a tumor size with unitmm3,
Tmax is a maximum tumor size, M1

is an elimination constant with unit
time−1, Mi is compartment for delay,
and τi are average resident time con-
stant with unit time, τi ∈ R+, i =
2, 3, · · · , n. Eq.(4) is considered from
a delay differential equation(DDE) to
system of ODE by a linear trick in re-
moval process [4, 14]. Contrary to above
the TGI model, the FTGI model using
fractional-order derivative based on [22]
with Emax model is constructed as fol-
lows.

DαT = q1ET

(
1− T

Tmax

)
−q2T, (5)

where T0 is initial tumor size, 0 < α ≤
1 is a fractional-order, q1 has time−α

constant, and a constant q2 has a unit
time−α.

Results

Laplace transform is applied to ex-
tract drug concentration from the frac-
tional drug-disposition model. From
Eq.(2), the following equation is ex-
pressed by taking Laplace transforma-
tion both sides:

sY1(s)− C0 = −k01(s(1−α10)Y1(s)−
s−α10C0)− k12(s(1−α12)Y1(s)−
s−α12C0) + k21s

(1−α21)Y2(s)−(
k01C0

sα10
+ k12C0

sα12

)
sY2(s) = k12(s(1−α12)Y1(s)− s−α12 ·
C0)− k02s

(1−α20)Y2(s)− k21s
(1−α21)·

Y2(s) + k12C0

sα12
,

,

where

L
(
t(αij−1)

)
=

Γ(αij)

sαij
, 0 < αij ≤ 1.

Thus, Y1 and Y2 are given by

{
Y1(s) = (s+f20+f21)C0

(s+f10+f12)(s+f20+f21)−f12f21
Y2(s) = f12

s+f20+f21
Y1(s),

(6)
where fij(s) = kijs

1−αij , i 6= j, i =
1, 2, and j = 0, 1, 2.We compare Eq.(3)
and Eq.(5) by setting the value of αij
to be “1” in order to determine whether
the drug disposition model in Eq.(5)
agrees with Eq.(3). In the case, there
is no difference between the two models
shown in Fig.2. The drug disposition,
Emax model, and the TGI effect are
investigated by solving (5) and (6).

The FTGI model is compared when
the value of α is “1”, as shown in Fig.3.
Various dynamics of FTGI are explored
according to the α value. Obviously, it
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Table 1. The pa-
rameter values, units,
and explanations.

Parameter Value Unit

k01 0.5 time−10

k12 0.5 time−12

k02 0.5 time−20

k21 0.5 time−21

q1 0.03 time−α

q2 0.1 time−α

T0 100 mm3

Emax 20 unitless
IC50 80 nM
E0 50 nM
C0 200 nM
Tmax 5000 mm3

α10 (0, 1] unitless
α12 (0, 1] unitless
α20 (0, 1] unitless
α21 (0, 1] unitless
α (0, 1] unitless

is clear that the larger the value of α,
the more similar it is to the model (3).

Fig.2(a) shows various drug dynam-
ics using values of αij that are gen-
erated by 1000 random numbers. A
fast decline in the initial time phase
is seen when αij is smaller. Contrary
to the yellow curve, which represents
(3), where the drug converges to zero
with time, there is drug trapping as
the value of αij becomes less than one.
In Fig.2(b), we plot the largest(the or-
ange curve that has the plus shape)
and the smallest (the blue curve that
has the star shape) values that were
obtained by the mean square of the dif-
ference of the drug concentrations of
Eqs.(5) and (3). The blue curve that
has the star shape appears to have no
difference from the orange curve that
has the plus shape in the linear scale,

but in (c), it has a different shape in
the log-scale. This is because of the
power-law function owing to the val-
ues of αij . There are no curves be-
low the yellow curve Eq.(3) except for
a short initial period. From this, the
fractional-order in the model indicates
a drug-trapping effect. This is one rea-
son for which Eq.(5) should be consid-
ered as a model to fit data for drug ac-
cumulation. By assuming a subitable
fractional-order, it may be possible to
obtain better PK simulation results for
drug accumulation. Fig.3(a) implies
the TGI effect, which is obtained by
taking the drug concentration from (3)
and (5) when α = 1, and which shows
no difference between (3) and (5) when
α = 1. Fig.3(b) are plotted the dy-
namics when different values of α are
changed by 1000 iterations randomly.
The larger the value of α, the greater is
the delay that is observed in the initial
phase. Interestingly, small values of α
imply small tumor delay in the initial
phase, but have small equilibrium val-
ues. Tumor growth (blue) based on (3)
in Fig.3(a) is increased by the equilib-
rium point. The tumor growth based
on (5) shows interesting dynamics. i.e.,
less delay in the initial phase and small
equilibrium as α is smaller. This indi-
cates that FTGI explains the abnormal
kinetics of a drug that accumulates in
the body and this enables decisions re-
garding flexible tumor-equilibrium points
by a drug, unlike (3). More precisely,
the TGI model based on (3) does not
consider the long-time dynamics because
the equilibrium point always reaches
a constant number when Tmax is con-
stant, but in FTGI, flexible decisions
about the tumor equilibrium by a drug
administration are possible. Although
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Figure 2. (a) Eq.(3) is plotted by the yellow curve, and various other

curves are obtained using (5) with various values of αij . (b) The largest

and smallest curves obtained the difference between (3) and (5) are plot-

ted from (a). (c) Unlike the linear scale, the log scale shows that drug

concentrations are different even though they appears to be similar in (b).
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Figure 3. (a) There is no difference in the tumor sizes between FDE

(5) and ODE (3) when α = 1. (b) Curves are plotted with various values

of 0 ≤ α ≤ 1. (c) A variation of the value of Tmax in (3) and concavities.

(d) Variation of α in (5) and concavities. (e) The number of concavities

are different according to α.

the system based on ODEs has shown
that the tumor is suppressed in the ini-
tial phase, and it eventually reaches
the maximum value of the model when

the drug administration is stopped, the
FTGI model supplies that the thera-
peutic effect can be observed with time
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without the change of Tmax. The dif-
ference between α in (5) and Tmax in
(3) are plotted. The number of concav-
ities of (3) does not change, as shown
in Fig.3(c); however, (5) does not, as
shown in Fig.3(d). Figs. 3(c), (d), and
(e) explain the concavity changes ob-
tained using α on (5) and Tmax on (3).
The results generated by 100 iterations
are plotted, and the time scale is lim-
ited by 10 days for a clear explanation.
Inflection points in (3) follow a qua-
dratic function up to the maximum tu-
mor size of Tmax, as shown in Fig.3(c),
but the change in the inflection points
according to α does not follow expo-
nential, rational, or polynomial func-
tions, as shown in Fig.3(d). Further-
more, the number of concavities is dif-
ferent from α. As seen in Fig.3(e), the
number of inflection points over α is
followed as the sum of step functions
depends on α. This causes the num-
ber of inflection points on the FTGI
model to not be fixed, and the shape
does not increase nor decrease, unlike
(3), as seen in Fig.3(c). Therefore, it
is important to know the number of
concavities from data to determine a
suitable α.

Discussion

We have constructed the fractional-
order model that can be used in drug-
disposition and TGI. The FTGI model
may describe an abnormal behavior of
TGI data and present a criterion on
how to determine a suitable fractional-
order. The difference in tumor reduc-
tion are explored caused by fractional-
order α and maximum tumor size Tmax.
The question that arises aims to de-
termine the fast decline in the initial

phase and drug-trapping at the long
time in the drug-disposition by αij . A
possible reason is that the fractional
order explains the accumulation effect
of the drug. Dokoumetzidis et al. [10]
explains that the fractional profile ap-
pears to be initially faster, but it even-
tually becomes slower. The slower ki-
netics arises as a result of the power-
law kinetic of the terminal phase of the
fractional case. The FTGI model indi-
cates that the stronger tumor inhibi-
tion could be happened due to anor-
mal drug accumulation. As assuming
a suitable fractional-order in vivo, the
developed model may realize better sim-
ulation results when the drug disposi-
tion profile seems non-exponential ter-
minal phases, the presence of which
has been extensively acknowledged in
the pharmaceutical literature, and with
several approximation techniques, which
should be proposed for fractional sys-
tems with different levels of accuracy,
as explained in [23]. One of the next
studies will discuss how to describe un-
usual tumor growth and inhibition with
observable data. From (5), the frac-
tional order remains the left side of the
equation, but the reason remains un-
known. Therefore, when a fractional
order is attached to the right side of
the equation, it should be investigated,
and the reason should be clarified. Thus,
in future study, we should explore the
answer to this problem by studying dif-
ferent fractional-order models with phys-
ical meanings, and not ad-hoc models,
but age-structure models using the sto-
chastic process.
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