• Title/Summary/Keyword: fractional integral operators

Search Result 60, Processing Time 0.02 seconds

FRACTIONAL MAXIMAL AND INTEGRAL OPERATORS ON WEIGHTED AMALGAM SPACES

  • Rakotondratsimba, Y.
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.5
    • /
    • pp.855-890
    • /
    • 1999
  • Necessary and sufficient conditions on the weight functions u(.) and $\upsilon$(.) are derived in order that the fractional maximal operator $M\alpha,\;0\;\leq\;\alpha\;<\;1$, is bounded from the weighted amalgam space $\ell^s(L^p(\mathbb{R},\upsilon(x)dx)$ into $\ell^r(L^q(\mathbb{R},u(x)dx)$ whenever $1\leq s\leq r<\infty\;and\;1. The boundedness problem for the fractional intergral operator $I_{\alpha},0<\alpha\leq1$, is also studied.

  • PDF

SOME NEW ESTIMATES FOR EXPONENTIALLY (ħ, m)-CONVEX FUNCTIONS VIA EXTENDED GENERALIZED FRACTIONAL INTEGRAL OPERATORS

  • Rashid, Saima;Noor, Muhammad Aslam;Noor, Khalida Inayat
    • Korean Journal of Mathematics
    • /
    • v.27 no.4
    • /
    • pp.843-860
    • /
    • 2019
  • In the article, we present several new Hermite-Hadamard and Hermite-Hadamard-Fejér type inequalities for the exponentially (ħ, m)-convex functions via an extended generalized Mittag-Leffler function. As applications, some variants for certain typ e of fractional integral operators are established and some remarkable special cases of our results are also have been obtained.

Certain Inequalities Involving Pathway Fractional Integral Operators

  • Choi, Junesang;Agarwal, Praveen
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.4
    • /
    • pp.1161-1168
    • /
    • 2016
  • Belarbi and Dahmani [3], recently, using the Riemann-Liouville fractional integral, presented some interesting integral inequalities for the Chebyshev functional in the case of two synchronous functions. Subsequently, Dahmani et al. [5] and Sulaiman [17], provided some fractional integral inequalities. Here, motivated essentially by Belarbi and Dahmani's work [3], we aim at establishing certain (presumably) new inequalities associated with pathway fractional integral operators by using synchronous functions which are involved in the Chebychev functional. Relevant connections of the results presented here with those involving Riemann-Liouville fractional integrals are also pointed out.

CERTAIN NEW PATHWAY TYPE FRACTIONAL INTEGRAL INEQUALITIES

  • Choi, Junesang;Agarwal, Praveen
    • Honam Mathematical Journal
    • /
    • v.36 no.2
    • /
    • pp.455-465
    • /
    • 2014
  • In recent years, diverse inequalities involving a variety of fractional integral operators have been developed by many authors. In this sequel, here, we aim at establishing certain new inequalities involving pathway type fractional integral operator by following the same lines, recently, used by Choi and Agarwal [7]. Relevant connections of the results presented here with those earlier ones are also pointed out.

Certain Fractional Integral Operators and Extended Generalized Gauss Hypergeometric Functions

  • CHOI, JUNESANG;AGARWAL, PRAVEEN;JAIN, SILPI
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.3
    • /
    • pp.695-703
    • /
    • 2015
  • Several interesting and useful extensions of some familiar special functions such as Beta and Gauss hypergeometric functions and their properties have, recently, been investigated by many authors. Motivated mainly by those earlier works, we establish some fractional integral formulas involving the extended generalized Gauss hypergeometric function by using certain general pair of fractional integral operators involving Gauss hypergeometric function $_2F_1$, Some interesting special cases of our main results are also considered.

FRACTIONAL INTEGRATION AND DIFFERENTIATION OF THE (p, q)-EXTENDED MODIFIED BESSEL FUNCTION OF THE SECOND KIND AND INTEGRAL TRANSFORMS

  • Purnima Chopra;Mamta Gupta;Kanak Modi
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.3
    • /
    • pp.755-772
    • /
    • 2023
  • Our aim is to establish certain image formulas of the (p, q)-extended modified Bessel function of the second kind Mν,p,q(z) by employing the Marichev-Saigo-Maeda fractional calculus (integral and differential) operators including their composition formulas and using certain integral transforms involving (p, q)-extended modified Bessel function of the second kind Mν,p,q(z). Corresponding assertions for the Saigo's, Riemann-Liouville (R-L) and Erdélyi-Kober (E-K) fractional integral and differential operators are deduced. All the results are represented in terms of the Hadamard product of the (p, q)-extended modified Bessel function of the second kind Mν,p,q(z) and Fox-Wright function rΨs(z).

SOME APPLICATIONS AND PROPERTIES OF GENERALIZED FRACTIONAL CALCULUS OPERATORS TO A SUBCLASS OF ANALYTIC AND MULTIVALENT FUNCTIONS

  • Lee, S.K.;Khairnar, S.M.;More, Meena
    • Korean Journal of Mathematics
    • /
    • v.17 no.2
    • /
    • pp.127-145
    • /
    • 2009
  • In this paper we introduce a new subclass $K_{\mu}^{\lambda},{\phi},{\eta}(n;{\rho};{\alpha})$ of analytic and multivalent functions with negative coefficients using fractional calculus operators. Connections to the well known and some new subclasses are discussed. A necessary and sufficient condition for a function to be in $K_{\mu}^{\lambda},{\phi},{\eta}(n;{\rho};{\alpha})$ is obtained. Several distortion inequalities involving fractional integral and fractional derivative operators are also presented. We also give results for radius of starlikeness, convexity and close-to-convexity and inclusion property for functions in the subclass. Modified Hadamard product, application of class preserving integral operator and other interesting properties are also discussed.

  • PDF

ON GENERALIZED WRIGHT'S HYPERGEOMETRIC FUNCTIONS AND FRACTIONAL CALCULUS OPERATORS

  • Raina, R.K.
    • East Asian mathematical journal
    • /
    • v.21 no.2
    • /
    • pp.191-203
    • /
    • 2005
  • In the present paper we first establish some basic results for a substantially more general class of functions defined below. The results include simple differentiation and fractional calculus operators(integration and differentiation of arbitrary orders) for this class of functions. These results are then invoked in determining similar properties for the generalized Wright's hypergeometric functions. Further, norm estimate of a certain class of integral operators whose kernel involves the generalized Wright's hypergeometric function, and its composition(and other related properties) with the fractional calculus operators are also investigated.

  • PDF

Some Theorems Connecting the Unified Fractional Integral Operators and the Laplace Transform

  • Soni, R. C.;Singh, Deepika
    • Kyungpook Mathematical Journal
    • /
    • v.45 no.2
    • /
    • pp.153-159
    • /
    • 2005
  • In the present paper, we obtain two Theorems connecting the unified fractional integral operators and the Laplace transform. Due to the presence of a general class of polynomials, the multivariable H-function and general functions ${\theta}$ and ${\phi}$ in the kernels of our operators, a large number of (new and known) interesting results involving simpler polynomials (which are special cases of a general class of polynomials) and special functions involving one or more variables (which are particular cases of the multivariable H-function) obtained by several authors and hitherto lying scattered in the literature follow as special cases of our findings. Thus the Theorems obtained by Srivastava et al. [9] follow as simple special cases of our findings.

  • PDF

A GENERALIZATION OF THE KINETIC EQUATION USING THE PRABHAKAR-TYPE OPERATORS

  • Dorrego, Gustavo Abel;Kumar, Dinesh
    • Honam Mathematical Journal
    • /
    • v.39 no.3
    • /
    • pp.401-416
    • /
    • 2017
  • Fractional kinetic equations are investigated in order to describe the various phenomena governed by anomalous reaction in dynamical systems with chaotic motion. Many authors have provided solutions of various families of fractional kinetic equations involving special functions. Here, in this paper, we aim at presenting solutions of certain general families of fractional kinetic equations using Prabhakar-type operators. The idea of present paper is motivated by Tomovski et al. [21].