• Title/Summary/Keyword: fourier transforms

Search Result 212, Processing Time 0.028 seconds

SHIFTING AND MODULATION FOR FOURIER-FEYNMAN TRANSFORM OF FUNCTIONALS IN A GENERALIZED FRESNEL CLASS

  • Kim, Byoung Soo
    • Korean Journal of Mathematics
    • /
    • v.25 no.3
    • /
    • pp.335-347
    • /
    • 2017
  • Time shifting and frequency shifting proprerties for the Fourier-Feynman transform of functionals in a generalized Fresnel class ${\mathcal{F}}_{A_1,A_2}$ are given. We discuss scaling and modulation proprerties for the Fourier-Feynman transform. These properties help us to obtain Fourier-Feynman transforms of new functionals from the Fourier-Feynman transforms of old functionals which we know their Fourier-Feynman transforms.

GENERALIZED ANALYTIC FEYNMAN INTEGRALS INVOLVING GENERALIZED ANALYTIC FOURIER-FEYNMAN TRANSFORMS AND GENERALIZED INTEGRAL TRANSFORMS

  • Chang, Seung Jun;Chung, Hyun Soo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.21 no.2
    • /
    • pp.231-246
    • /
    • 2008
  • In this paper, we use a generalized Brownian motion process to define a generalized analytic Feynman integral. We then establish several integration formulas for generalized analytic Feynman integrals generalized analytic Fourier-Feynman transforms and generalized integral transforms of functionals in the class of functionals ${\mathbb{E}}_0$. Finally, we use these integration formulas to obtain several generalized Feynman integrals involving the generalized analytic Fourier-Feynman transform and the generalized integral transform of functionals in ${\mathbb{E}}_0$.

  • PDF

CONVOLUTION THEOREMS FOR FRACTIONAL FOURIER COSINE AND SINE TRANSFORMS AND THEIR EXTENSIONS TO BOEHMIANS

  • Ganesan, Chinnaraman;Roopkumar, Rajakumar
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.4
    • /
    • pp.791-809
    • /
    • 2016
  • By introducing two fractional convolutions, we obtain the convolution theorems for fractional Fourier cosine and sine transforms. Applying these convolutions, we construct two Boehmian spaces and then we extend the fractional Fourier cosine and sine transforms from these Boehmian spaces into another Boehmian space with desired properties.

Fourier Cosine and Sine Transformable Boehmians

  • Ganesan, Chinnaraman;Roopkumar, Rajakumar
    • Kyungpook Mathematical Journal
    • /
    • v.54 no.1
    • /
    • pp.43-63
    • /
    • 2014
  • The range spaces of Fourier cosine and sine transforms on $L^1$([0, ${\infty}$)) are characterized. Using Fourier cosine and sine type convolutions, Fourier cosine and sine transformable Boehmian spaces have been constructed, which properly contain $L^1$([0, ${\infty}$)). The Fourier cosine and sine transforms are extended to these Boehmian spaces consistently and their properties are established.

CERTAIN RESULTS INVOLVING FRACTIONAL OPERATORS AND SPECIAL FUNCTIONS

  • Aghili, Arman
    • Korean Journal of Mathematics
    • /
    • v.27 no.2
    • /
    • pp.487-503
    • /
    • 2019
  • In this study, the author provided a discussion on one dimensional Laplace and Fourier transforms with their applications. It is shown that the combined use of exponential operators and integral transforms provides a powerful tool to solve space fractional partial differential equation with non - constant coefficients. The object of the present article is to extend the application of the joint Fourier - Laplace transform to derive an analytical solution for a variety of time fractional non - homogeneous KdV. Numerous exercises and examples presented throughout the paper.

QUANTUM EXTENSIONS OF FOURIER-GAUSS AND FOURIER-MEHLER TRANSFORMS

  • Ji, Un-Cig
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.6
    • /
    • pp.1785-1801
    • /
    • 2008
  • Noncommutative extensions of the Gross and Beltrami Laplacians, called the quantum Gross Laplacian and the quantum Beltrami Laplacian, resp., are introduced and their basic properties are studied. As noncommutative extensions of the Fourier-Gauss and Fourier-Mehler transforms, we introduce the quantum Fourier-Gauss and quantum Fourier- Mehler transforms. The infinitesimal generators of all differentiable one parameter groups induced by the quantum Fourier-Gauss transform are linear combinations of the quantum Gross Laplacian and quantum Beltrami Laplacian. A characterization of the quantum Fourier-Mehler transform is studied.

TRANSFORMS AND CONVOLUTIONS ON FUNCTION SPACE

  • Chang, Seung-Jun;Choi, Jae-Gil
    • Communications of the Korean Mathematical Society
    • /
    • v.24 no.3
    • /
    • pp.397-413
    • /
    • 2009
  • In this paper, for functionals of a generalized Brownian motion process, we show that the generalized Fourier-Feynman transform of the convolution product is a product of multiple transforms and that the conditional generalized Fourier-Feynman transform of the conditional convolution product is a product of multiple conditional transforms. This allows us to compute the (conditional) transform of the (conditional) convolution product without computing the (conditional) convolution product.

RELATIONSHIPS BETWEEN INTEGRAL TRANSFORMS AND CONVOLUTIONS ON AN ANALOGUE OF WIENER SPACE

  • Cho, Dong Hyun
    • Honam Mathematical Journal
    • /
    • v.35 no.1
    • /
    • pp.51-71
    • /
    • 2013
  • In the present paper, we evaluate the analytic conditional Fourier-Feynman transforms and convolution products of unbounded function which is the product of the cylinder function and the function in a Banach algebra which is defined on an analogue o Wiener space and useful in the Feynman integration theories and quantum mechanics. We then investigate the inverse transforms of the function with their relationships and finally prove that th analytic conditional Fourier-Feynman transforms of the conditional convolution products for the functions, can be expressed in terms of the product of the conditional Fourier-Feynman transforms of each function.