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INFINITESIMAL GENERATORS OF THE

GENERALIZED FOURIER–GAUSS TRANSFORMS

Un Cig Ji* and Young Yi Kim**

Abstract. In this note, we investigate the infinitesimal generators
of the transformation groups induced by the Fourier–Gauss and
Fourier–Mehler transforms on white noise functionals.

1. Introduction

As a natural extension of the finite dimensional Laplacian, Gross [3]
introduced an infinite dimensional Laplacian which is called the Gross
Laplacian. Since then the Gross Laplacian has been studied by many
mathematicians, among others, Kuo studied the Gross Laplacian and
number operator as continuous linear operators acting on the space of
test white noise functionals.

On the other hand, in [2], the authors studied all one–parameter
transformation groups induced by the Fourier–Gauss transform and Fou-
rier–Mehler transform based on the white noise theory, and their infini-
tesimal generators which are linear combinations of the Gross Laplacian
and the number operator. For more study of the transforms, we also re-
fer to [5, 8, 9]. In [1], the Fourier–Gauss and Fourier–Mehler transforms
have been generalized to transforms of operator parameters and so the
generalized transforms are called the generalized Fourier–Gauss and gen-
eralized Fourier–Mehler transforms of which the unitarities are studied
in [6]. Recently, in [7], the authors studied relations between the Bogoli-
ubov transformations and the generalized Fourier–Gauss transforms.
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Main purpose of this paper is to study the one–parameter transforma-
tion groups induced by the generalized Fourier–Gauss and generalized
Fourier–Mehler transforms, and their infinitesimal generators.

This paper is organized as follows: In Section 2 we recall basic no-
tions in white noise theory with analytic characterization for operator
symbols [10]. In Section 3 we study basic properties of the generalized
Fourier–Gauss and generalized Fourier–Mehler transforms. In Section
4 we investigate one-parameter transformation groups induced by the
generalized Fourier–Gauss and generalized Fourier–Mehler transforms,
and their infinitesimal generators which are linear combinations of the
generalized Gross Laplacian and the generalized Beltrami Laplacian.

2. Preliminaries

Let (T, ν) be a measure space, where T is a topological space. Let
HR = L2(T, ν) be the real Hilbert space of all square integrable functions
on T with respect to ν with the norm |·|0 generated by the inner product
⟨·, ·⟩. Let A be a positive self-adjoint operator inHR satisfying that there
exists a sequence {λj}∞j=0 with

1 < λ0 ≤ λ1 ≤ λ2 ≤ . . . ,

∞∑
j=0

λ−2
j < ∞

and a complete orthonormal basis {ej}∞j=0 of HR such that Aej = λjej .
Then we have

ρ ≡ ∥A−1 ∥OP = λ−1
0 , ∥A−q ∥2HS =

∞∑
j=0

λ−2q
j .

For each p ≥ 0, let

ER,p = {ξ ∈ HR ; | ξ |p ≡ |Apξ |0 < ∞}

and ER,−p be the completion of HR with respect to | · |−p ≡ |A−p · |0.
Then by the chain of Hilbert spaces {ER,p ; p ∈ R} with

ER = proj lim
p→∞

ER,p, E∗
R
∼= ind lim

p→∞
ER,−p,

we get a real Gelfand triple

(2.1) ER ⊂ HR ⊂ E∗
R,
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where ER and E∗
R are mutually dual spaces. Finally, by taking complex-

ification of (2.1), we have a complex Gelfand triple:

E ⊂ H ⊂ E∗.

The canonical C-bilinear form on E∗ × E which is compatible with the
inner product of H is denoted by ⟨·, ·⟩ again.

For each p ∈ R, let Ep be complexification of ER,p. The (Boson) Fock
space over Ep is defined by

Γ(Ep) =

{
ϕ = (fn)

∞
n=0; fn ∈ E⊗̂n

p , ∥ϕ ∥2p =
∞∑
n=0

n! | fn |2p < ∞

}
,

where E⊗̂n
p is the symmetric n-fold tensor product. From the chain of

Fock spaces {Γ(Ep) ; p ∈ R}, by setting

(E) = proj lim
p→∞

Γ(Ep), (E)∗ = ind lim
p→∞

Γ(E−p),

we construct the Gelfand triple:

(E) ⊂ Γ(H) ⊂ (E)∗

which is referred to as the Hida–Kubo–Takenaka space in the white noise
theory [4, 8, 11]. The topology on (E) is given by the norms

∥ϕ ∥2p =
∞∑
n=0

n! | fn |2p , ϕ = (fn), p ∈ R.

On the other hand, for each Φ = (Fn) ∈ (E)∗ there exists p ≥ 0 such
that Φ ∈ Γ(E−p) and

∥Φ ∥2−p ≡
∞∑
n=0

n! |Fn |2−p < ∞.

The canonical C-bilinear form on (E)∗ × (E) is denoted by ⟨⟨·, ·⟩⟩ and
we have

⟨⟨Φ, ϕ⟩⟩ =
∞∑
n=0

n! ⟨Fn, fn⟩ , Φ = (Fn) ∈ (E)∗,

for any ϕ = (fn) ∈ (E). For each ξ ∈ E,

ϕξ =

(
1, ξ,

ξ⊗2

2!
, . . . ,

ξ⊗n

n!
, . . .

)
is called an exponential vector (or coherent vector). In particular, ϕ0 is
called the vacuum vector.
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A continuous linear operator Ξ from (E) into (E)∗ is called a white
noise operator. Let L((E), (E)∗) denote the space of all white noise
operators equipped with the topology of bounded convergence. The
symbol of Ξ ∈ L((E), (E)∗) is defined by

Ξ̂(ξ, η) = ⟨⟨Ξϕξ, ϕη⟩⟩ , ξ, η ∈ E.

Then we have the following analytic characterization of operator sym-
bols.

Theorem 2.1 ([10]). Let Θ be a C-valued function on E ×E. Then
Θ is the symbol of an operator in L((E), (E)) if and only if

(i) for any ξ, ξ1, η, η1 ∈ E, the function

z, w 7−→ Θ(zξ + ξ1, wη + η1)

is an entire holomorphic function on C× C.
(ii) for any p ≥ 0 and ϵ > 0, there exist two positive constants C and

q such that

|Θ(ξ, η)| ≤ Ceϵ(|ξ|
2
p+q+|η|2−p), ξ, η ∈ E.

In this case,

∥Ξϕ ∥p−1 ≤ CM(ϵ, q, r) ∥ϕ ∥p+q+r+1 , ϕ ∈ (E),

where M(ϵ, q, r) is a (finite) constant for ϵ < (2e3δ2)−1, r ≥ r0(q) ≥ 0.

For each U ∈ L(E,E∗) and V ∈ L(E,E), the generalized Gross
Laplacian or U–Gross Laplacian ∆G(U) and the generalized Beltrami
Laplacian N(V ) is defined by

∆̂G(U)(ξ, η) = ⟨Uξ, ξ⟩ e⟨ξ, η⟩, N̂(V )(ξ, η) = ⟨V ξ, η⟩ e⟨ξ, η⟩

for ξ, η ∈ E. Then by applying Theorem 2.1, we can easily see that
∆G(U) ∈ L((E), (E)) and N(V ) ∈ L((E), (E)).

3. Generalized Fourier–Gauss transforms

For a nuclear Fréchet space X with defining Hilbertian norms {∥ · ∥α},
we denote by GL(X) the group of all linear homeomorphisms from X
onto itself.

For each U ∈ L(E,E∗) and V ∈ L(E,E), by Theorem 2.1 there exists
an operator GU,V ∈ L((E), (E)) such that

GU,V ϕξ = ϕV ξ exp ⟨Uξ, ξ⟩, ξ ∈ E.
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The operator GU,V ∈ L((E), (E)) is called the generalized Fourier–Gauss
transform or GU,V -transform. The adjoint operator G∗

U,V of GU,V is de-
noted by FU,V and called the generalized Fourier–Mehler transform or
FU,V -transform. For the more study of the generalized Fourier–Gauss
and generalized Fourier–Mehler transforms, we refer to [1].

Theorem 3.1 ([1]). Let U,U ′ ∈ L(E,E∗) and V, V ′ ∈ L(E,E). Then
in order that GU ′,V ′GU,V ϕ = ϕ for any ϕ ∈ (E), it is necessary and
sufficient that

V ′V = I and V ∗U ′V + U = 0 (the zero operator).

Therefore, G = {GU,V |U ∈ L(E,E∗), V ∈ GL(E)} (resp. {FU,V |U ∈
L(E,E∗), V ∈ GL(E)}) is a subgroup of GL((E)) (resp. GL((E)∗)).
Moreover, we have G0,I = I and

GU ′,V ′GU,V = GV ∗U ′V+U,V ′V .

4. One-parameter transformation groups

Let X be a nuclear Fréchet space with defining Hilbertian norms
{∥ · ∥α}α∈I. A one-parameter subgroup {gθ}θ∈R of GL(X) is said to be
differentiable if, for every ξ ∈ X, limθ→0((gθξ − ξ)/θ) converges in the
topology of X. In this case, a linear operator X from X into itself defined
by

Xξ = lim
θ→0

gθξ − ξ

θ
, ξ ∈ X,

is called the infinitesimal generator of {gθ}θ∈R. It is shown that X ∈
L(X,X) and that, for any θ ∈ R, we have gθXϕ = Xgθϕ for ϕ ∈ X. For
the proof, see Section 5.2 in [11].

A differentiable one-parameter subgroup {gθ}θ∈R ⊂ GL(X) with the
infinitesimal generator X is called regular if for any α ∈ I, there exists
β ∈ I such that

lim
θ→0

sup
∥ ξ ∥β≤1

∥∥∥∥ gθξ − ξ

θ
−Xξ

∥∥∥∥
α

= 0.

Lemma 4.1. Let U and V be two differentiable maps on R such that
U(θ) ∈ L(E,E∗) and V (θ) ∈ L(E,E) for any θ ∈ R. We assume that V
is regular. Then {GU(θ),V (θ)}θ∈R is a one-parameter subgroup ofGL((E))
if and only if {V (θ)}θ∈R is a one–parameter subgroup of GL(E) and U(θ)
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is given by

(4.1) U(θ) =

∫ θ

0
V (s)∗UV (s)ds,

for U = U ′(0) ∈ L(E,E∗).

Remark 4.2. In (4.1), the integral is in the Pettis sense and the
integrability is justified from the equicontinuity of V (θ) on every finite
interval which is implied by the assumption that V is regular.

Proof. Let {GU(θ),V (θ)}θ∈R be a one-parameter subgroup of GL((E)).
Then it holds that, for any θ1, θ2 ∈ R and ϕ ∈ (E),

GU(θ2),V (θ2)GU(θ1),V (θ1)ϕ = GU(θ1)+V (θ1)∗U(θ2)V (θ1),V (θ2)V (θ1)ϕ

= GU(θ1+θ2),V (θ1+θ2)ϕ.

So, U(θ) and V (θ) satisfy the equations:

U(θ1 + θ2) = U(θ1) + V (θ1)
∗U(θ2)V (θ1)(4.2)

V (θ1 + θ2) = V (θ2)V (θ1)(4.3)

for θ1, θ2 ∈ R. From the group property, V (0) = I and U(0) = 0.
Therefore, by (4.3), {V (θ)}θ∈R is a one–parameter subgroup of GL(E).
To find the solution of (4.2), we compute U ′(θ) as follows:

U ′(θ) = lim
h→0

U(θ + h)− U(θ)

h

= lim
h→0

V (θ)∗(U(h)− U(0))V (θ)

h

= V (θ)∗U ′(0)V (θ).

Therefore, we have the equality (4.1). Now, we can see that (4.1) is the
solution of (4.2). In fact, for any θ1, θ2 ∈ R, we obtain that

U(θ1 + θ2) =

∫ θ1+θ2

0
V (s)∗UV (s) ds

=

∫ θ1

0
V (s)∗UV (s) ds+

∫ θ1+θ2

θ1

V (s)∗UV (s) ds

= U(θ1) +

∫ θ2

0
V (t+ θ1)

∗UV (t+ θ1) dt

= U(θ1) + V (θ1)
∗U(θ2)V (θ1),

as desired. The converse is straightforward.
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Remark 4.3 ([11]). An infinitesimal generator X of a differentiable
one–parameter subgroup {gθ}θ∈R of GL(X) is continuous, i.e., X ∈
L(X,X). Let {V (θ)}θ∈R be a differentiable one–parameter subgroup of
GL(E). Then there exists an infinitesimal generator V ∈ L(E,E) and
so we write V (θ) = eθV (see Proposition 5.2.2 in [11]).

Let LE(X,X) be the class of operators X ∈ L(X,X) satisfying that
there exists r > 0 such that {(rX)n/n!}∞n=0 is equicontinuous, i.e., for
any α ∈ I there exist C = C(α) ≥ 0 and β = β(α) ∈ I such that

sup
n≥0

1

n!
∥ (rX)nξ ∥α ≤ C ∥ ξ ∥β , ξ ∈ X.

For any U ∈ L(E,E∗) and V ∈ LE(E,E), we define a one–parameter
subgroup {HU,V ;θ}θ∈R of GL((E)) by

HU,V ;θ = GU(θ), eθV and U(θ) =

∫ θ

0
esV

∗
UesV ds.

We can show that the one-parameter group {HU,V ;θ}θ∈R is differen-
tiable and regular as follows.

Theorem 4.4. Let U ∈ L(E,E∗) and V ∈ LE(E,E). Then {HU,V ;θ}
is a regular one–parameter subgroup of GL((E)) with infinitesimal gen-
erator ∆G(U) +N(V ).

Proof. By Lemma 4.1, {HU,V ;θ}θ∈R is a one-parameter subgroup of
GL((E)). For any ξ, η ∈ E, we put

f(θ) = ĤU,V ;θ(ξ, η) = exp

{⟨∫ θ

0
esV

∗
UesV dsξ, ξ

⟩
+

⟨
eθV ξ, η

⟩}
.

Then we have

f ′(θ) =
{⟨

eθV
∗
UeθV ξ, ξ

⟩
+

⟨
V eθV ξ, η

⟩}
f(θ),

f ′′(θ) =
{⟨

(V ∗eθV
∗
UeθV + eθV

∗
UV eθV )ξ, ξ

⟩
+

⟨
V 2eθV ξ, η

⟩}
f(θ)

+
{⟨

eθV
∗
UeθV ξ, ξ

⟩
+

⟨
V eθV ξ, η

⟩}2
f(θ).
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Let θ0 > 0 be fixed. Then we note that, whenever |θ| ≤ θ0, for some
p, q ≥ 0 and γ > 0,∣∣f ′′(θ)

∣∣ ≤ C exp{K1 | ξ |p+q | ξ |−p +K2 | ξ |p+q | η |−p}

≤ C exp

{
K1ρ

(2p+q) | ξ |2p+q +
K2

2

(
γ2 | ξ |2p+q +

1

γ2
| η |2−p

)}
= C exp

{(
K1ρ

(2p+q) +
K2γ

2

2

)
| ξ |2p+q +

K2

2γ2
| η |2−p

}
,

with some constants C = C(U, V ; θ0), K1 = K1(U, V ; θ0) and K2 =
K2(U, V ; θ0). Now, we put

gθ(ξ, η) = f(θ)− f(0)− f ′(0)θ.

Then, by Taylor theorem, whenever |θ| ≤ θ0 it follows that

|gθ(ξ, η)| ≤
|θ|2

2
max
|θ|≤θ0

∣∣f ′′(θ)
∣∣

≤ |θ|2

2
C exp

{(
K1ρ

(2p+q) +
K2γ

2

2

)
ρ2r | ξ |2p+q+r +

K2

2γ2
| η |2−p

}
for ξ, η ∈ E. Now let ε ≥ 0 be given. We can find q ≥ 0, r ≥ 0 and
γ > 0 such that(

K1ρ
(2p+q) +

K2γ
2

2

)
ρ2r < ε and

K2

2γ2
< ε.

So, there exists q ≥ 0 such that

|gθ(ξ, η)| ≤
|θ|2

2
C exp{ε(| ξ |2p+q + | η |2−p)}, |θ| ≤ θ0, ξ, η ∈ E.

It then follows from Theorem 2.1, that there exists Ξθ ∈ L((E), (E))

such that Ξ̂θ = gθ and

(4.4) ∥Ξθϕ ∥p−1 ≤
|θ|2

2
CM(ε, q, r) ∥ϕ ∥p+q+r+1 , ϕ ∈ (E),

for some r ≥ 0. On the other hand, we see that

f(0) = e⟨ξ, η⟩ = Î(ξ, η),

f ′(0) = {⟨Uξ, ξ⟩+ ⟨V ξ, η⟩} e⟨ξ, η⟩ = ∆̂G(U)(ξ, η) + N̂(V )(ξ, η).

Hence we have

Ξθ = HU,V ;θ − I − θ (∆G(U) +N(V )) .
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From (4.4), it follows that

sup
∥ϕ ∥p+q+r+1

∥∥∥∥ HU,V ;θϕ− ϕ

θ
− (∆G(U) +N(V ))ϕ

∥∥∥∥
p−1

≤ |θ|
2
CM(ε, q, r)

→ 0

as θ → 0. Therefore, the proof is completed.

By the duality of Theorem 4.4, we have the following theorem.

Theorem 4.5. Let U ∈ L(E,E∗) and V ∈ LE(E,E). Then {H∗
U,V ;θ}

is a differentiable one-parameter subgroup of GL((E)∗) with infinitesi-
mal generator ∆∗

G(U) +N(V ∗).
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