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ABSTRACT. The range spaces of Fourier cosine and sine transforms on L'([0,00)) are
characterized. Using Fourier cosine and sine type convolutions, Fourier cosine and sine
transformable Boehmian spaces have been constructed, which properly contain L' ([0, 00)).
The Fourier cosine and sine transforms are extended to these Boehmian spaces consistently
and their properties are established.

1. Introduction

Let N,R and C be the sets of natural, real and complex numbers respectively.
Let C([0,00)) be the Fréchet space of all continuous complex valued functions on
[0,00) with the sequence of semi-norms sup,co.; |f(7)], Vf € C([0,00)), n € N.
Let (Co([0,00)), || |loo) be the normed linear space of all continuous complex valued
functions on [0, 00) vanishing at infinity, where || - || is the supremum norm. Let
L'([0,)) be the normed linear space of all Lebesgue measurable functions on

[0,00) with || f]l1 = { |f(s)]ds< 0.

For a suitable function f on [0, 00), the Fourier cosine and sine transforms [11]
are defined by

/f ) cos(st) ds and S(f /f )sin(st)ds, Vt € [0,00),
0 0

respectively. For more details about Fourier cosine and sine transforms, we refer the
reader to [11, 12] and for various types of convolutions and convolution theorems for
Fourier cosine and sine transforms we refer to [2, 4]. On the other hand, motivated
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by the concept of regular operators [1], the theory of Boehmians was introduced in
[5]. Two notions of convergence on the space of Boehmians and their properties are
discussed in [6]. Further, many integral transforms have been defined and studied
on various Boehmian spaces. A complete list of references on Boehmians is available
in http://math.ucf.edu/~piotr/Boehmians.pdf.

In the present article, we construct a Fourier cosine transformable Boehmian
space and a Fourier sine transformable Boehmian space by proving all the required
auxiliary results. Further, we extend the Fourier cosine and sine transform on these
Boehmian spaces consistently and discuss their properties.

This paper is organized as follows. In Section 2, by recalling the theory of
Fourier cosine and sine transforms from [11], we first point out that Fourier cosine
and sine transforms are linear, continuous, injective mappings from L' ([0, 00)) into
Co([0,00)). Then, we characterize the range of Fourier cosine and sine transforms
on L'([0,00)) and we also prove some results involving Fourier cosine and sine
convolutions. In Section 3, we construct Fourier cosine transformable and Fourier
sine transformable Boehmian spaces Bl and B!, by proving the required auxiliary
results. In Section 4, we extend the Fourier cosine and sine transforms as linear
one-to-one continuous mappings, respectively, from B and Bl into C([0,00)). We
also obtain characterization theorems for the range of extended Fourier cosine and
sine transforms on Boehmians.

2. Fourier Cosine and Sine Transforms on L!([0,))

We first observe that C(f) € Cy([0,00)) and [|C(f)|leo < I|f]l1, V.f € L(]0, 00)).
Indeed, for f € L1([0,00)), consider g : R — C defined by g(z) = f(z),Vz > 0 and
g(z) = 0,Vz < 0. Then g € L'(R) and hence its Fourier transform F(g) € Cp(R).
By using the deﬁnition we get

C(H) = ff cos(st)ds = ff (%) ds

Zé(ffSGIStdS—l—ffse_ZStdS) :w

0 0

which clearly shows that G( f) € Cy([0,00)). From the definition of cosine transform,
we also get [C(f)(¢)] < f |f(s)]] cos(st)|ds < ||f]l1, V¢t € [0, 00), which in turn implies

that [|C(f)|lcc < || f]l1- Further, from the identity f(s f C(f)(t)cos(ts)dt, Vs e

[0,00) [11], it follows that C(C(f)) = f, whenever f,C (f) € Ll([O,oo)). From these
observations, we have the following proposition.

Proposition 2.1. The Fourier cosine transform C : L1([0,00)) — Co([0, 00)) is
linear, one-to-one and continuous.

Similarly, we also have the following proposition.

Proposition 2.2. The Fourier sine transform 8 : L([0,00)) — Co([0,00)) is
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linear, one-to-one and continuous.

Definition 2.3.([1 ]) The Fourier cosine type convolution is defined for f,g €
L'([0,00)) by (f *c g)(z) = 3 f (z + )+ f(lz — y)]g(y)dy, Yz > 0.

Lemma 2.4. If f,g € L'([0,00)), then f *. g € L'([0,00)).

Proof. By using Fubini’s theorem, we obtain

I reglh < ;T(ffw+ynmwMy+ffm~ynm@n@)dx

0

=;(vau+ynw@nmwy+?7uux—ymmwdw@)
gﬂf|gw@+gfﬂamumm0

Y

(f?f|gw@+gff M|w@+fﬂf|MMw@>
)

00 00 oo Y

<6ff|f Mgy \dzdy+0fg|f 2)| lg(y \dzdy+ff|f MHg( )|d2dy>

= [ [1#G)la(w)] =y

l1 |lgll1, and hence f *. g € L'(]0, c0)). O

=

Lemma 2.5. If f, — f asn — oo in L*([0,00)) and if g € L*([0,0)), then
fn*eg— f*cg asn — oo in LY([0,00)).

Proof. From the proof of Lemma 2.4, we have the estimate

(2.1) [(fo = f) % glly < [Ifa = fllillgllz-

Since f, — f as n — oo in L'(]0, 00)), the right hand side of (2.1) tends to zero as
n — oo. Hence the lemma follows. |

Lemma 2.6. If f,g € L'([0,00)), then f *.g = g *. f.

Proof. Let t € [0,00) be arbitrary.
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(Freg)t) = :f°f<x+t o(@) dz+ [ £z — t)g(x) da

(by using the change of variables y =z +t¢ and z = x — ¢)
= [fWaly—t)dy+ [ f(|z])g(z +1t)dz
t —t

e 0 o0
= tff(y)g(y—t) dy+£f(—2)9(2+t) dz + Off(Z)g(Z+t) dz
(by putting y = —z in the second mtegral)
= Tf *tdy+ff dy+ff g(z +1t)dz
= ff g(ly —t) dy+ff g(z+1t)dz
= ff 9(ly —t)) + gy + )] dy
= (g*cf)()

Lemma 2.7. If f, 0,1 € L'([0,00)), then (f #c ¢) #c ) = [ %¢ (9 %c ).
Proof. By using Fubini’s theorem and suitable change of variables, we get

Alf #e (@ % 9I()

20f (t+ )+ £t — 2]))(p %o ) () da

[ ft+a) Zf[so(wy)+so<|x—y\>1w<y>dydx

+g’f(|t—:v|):fo[so(w+y)+<p(lw—y|)} W(y) dy de

Tw(y)

0

+ [ ¥(y
0

[ (y)

+ [ (

8

(t+x) (:U—i-y)d:cdy—i-j?w Tf (It — z])p(z + y)dzdy
0

8

o0

f
0ff(ter) (\l‘—yl)dxderfw(y ff |t — z])o(|z — yl)dx dy

flt+2— ) <>dzdy+fw ?f (It +y — 2)p()dz dy

=38
3

S

)Tf(tJrZer) (I2]) Idzderle(y ) | f(t =z —yhe(lz)dzdy

-y -y

[}

< o

W) [ £+ 2 —y)olz >dzdy+;f’w<y )T £t 4y — 2l)p(z)dzdy
)

+ Zoﬂ}(y) _fo ft+z+y)p(—2)dz+ { flt+z+ y)tp(Z)dZ> dy

oo 0 e’}
+ Jo) | ] 106===slel=2)az+ [ f(1t === y|)<ﬂ(2)d2> dy
:fw(y) T Ft+ 2 —y)p(x)dzdy + T b(y) T £t +y - 2)p(2)dzdy
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+ ot (f Flt ==+ ottt ] fle+ =+ y)so(z)dz) dy
+ Fow) (f F(t+ 2 — ul)p(2)dz + ] F(lt— = yl)s@(ZWZ) dy
g’ uen) { ft+z+y)p(z)dzdy + 0fw(y) Of f(t =z —yl)e(z)dzdy

+Jut) ?f<t+z—y>¢<z>dz+ff<|t+z—y|>w<z>dz dy

+Zfow(y) Tf(|t+y—z| z)derOfy (t—z+1y)p(2)dz | dy
T¢(y)<ofcf(t+z+y 9dz)dy+ | (Tf t— =~ ypl(2)d )dy
0 o 0 o 0
+f¢(y)<fft+z—y Z)d2>dy+f¢(y)(fflt+y—ZI) (2)d )dy
Tot (T £+ 2+ el )dy+fw (ff|t+y—z|> (2)d )dy
L % 0!
+Of¢(y)bff(\t—y+2\) ()dzdy+[¢ Off(lt—y+2|)¢>(2)dzdy
+Ofw<y> T e =y = =Doldzdy + (s Of F(lt —y — 2)é(z)dzdy

Zﬁ b(y) 7° Ft+y+2)+ f(lt+y— 2D]eo(=)dzdy
+0ftw<y>ff<t—y+z>¢<z>dzdy+ZM ) [ e =+ Do)y
+0fw<)2"°f<t— —z\>¢(z>dzdy+fwy2‘°f 4 2)6(2)dzdy
2:f°w< )(f %o ®)(t+ y)dy

+ [() [ £t —y+ 2)(=)dzdy + 70 wly) [yt +2)6(:)dzdy

0

<+

o0

+000) [ St =y = =)o(:)dzdy + [ i) 7° F(lt =y + 2)p(=)dzdy
20fw(y)(f *c @) (t +y)dy

+ [0 [ (=l + 2)o(dzdy + [ 0(0) [ £l 3] )o(e)dzdy
2 [ 0(w)(F % 6)(t + )y +2 ] V(S % 0)(t ~ yl)dy

22“’ PE)I(F e O)(E+ 1) + (f % 6) (It — y)]dy
4[(f #e 6) %o Y1(8).
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Theorem 2.8.(Convolution theorem for Fourier cosine transform [11]) If f,g €
Ll([0,00)), then e(f *c g) = e(f) ’ e(g)

Lemma 2.9. If f € L'([0,0)), then T|f(:z +y)— f(x)|de — 0 asy — 0 and
0
Oflf(lx—yl)—f(x)ld:r—>0 asy — 0.

Proof. Let € > 0 be arbitrary. For f € L'(]0,00)) and ¢ € [0, 00), let

0 0<s<t
ft(s):{f(s—t), s>t

By using the change of variable, u = x 4+ y, we get
[1r+0)- |ds—/|f flu- yIdu</|f (uy)ldu=1f,~
0

Since the space C.([0,00)) of all continuous functions on [0, c0) with compact sup-
ports is dense in L([0,00)), for the given € > 0, we find g € C.([0,0)) such that
lf —glli < §. Choose a compact subset H of [0,00) which contains the supports
of g and g¢,, Yy € [0,1). Since g is uniformly continuous on [0,00), there exists
0 < § < 1 such that [s —t| < § implies that [g(s) — g(t)| < 557, where M < oo is
greater than the Lebesgue measure of H. Now for 0 < y < §, we have
Ify = Fllv < fy = gylls + llgy = glls + llg = fllx
< 25+lgy—gln (since Ify — gyl = llg = fll < 5)

2§+Of|g(U)*g(ufy)ldu
2§+fﬁdu<e.
H

IN

IN

Therefore, [ |f(z +y) — f(z)|dz — 0 as y — 0. Next we observe that
0

(2.2) / 1z —y)) — f(2)|de = / Fly— ) — f(2)) do + / @ —y) - f(z)| da.
0 0 i

Using the previous argument, the second term in (2.2) tends to 0 as y — 0. On
the other hand, for 0 <z <y< g, we have |y — x — 2| < 3y < 4 and hence
lg(y —x) — g(x )| < 357+ Therefore,
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Ct—w

If(y —2) — f(x)|dx
= 6I?{If(y—ﬂa’) —gly—x)+gly —z) — g(x) + g(x) — f(x)|dx

y
< 2f =gl + [lgly — ) — g(x)| dzx
0
< 25+ f a57 Az < e
H
Thus the lemma follows. O

Theorem 2.10. Let f € L'([0,00)) and let (g,) be a sequence of functions defined
on [0, oo) such that

(P1) fgn Yy = 1,¥n € N, (P2) f|gn Vdy < M for some M > 0, Vn € N,

and (P3) hm f lgn(y)|dy = 0, for every 6 > 0. Then, f *. g, — f asn — oo in
Ll([O,OO))

Proof. Let € > 0 be given. Using Lemma 2.9, we choose a § > 0 such that

oo oo

/|f<x+y> <>\dx<—an/ (j2 —ol) — f(@)ldw < 5 Wy € [0,6).

0 0

Next using the property (P3) of (g,), we also find a positive integer N such that
f l9n(y)| dy < W,Vn > N. Applying Fubini’s theorem, for 0 < y < § and

n > N, we obtain that

||f*cgn f”l
= T3 Tl +9)+ fz -yl dy — fa fgn ) dy

[f(@+y) = f2) + f(lz = yl) = F(@)]gn(y) dy

dx, (using (P1))

dx

IN

|f(@+y) = f(@)]|gn(y)|dy + :fo\f(lfﬂ =yl) = f(@)||gn(y)] dy) dx

IN

/
0
( a+) = @ e lgnwldy + ] 17 = ol) = 1) delgn ) dy)
) oo oo
<3 <2;bf|gn(y)|dy+ [ 1gn(y)| L}f |f(z+y) —f(ff)Idrv} dy
T l9a () [f =yl - <z>|dx] dy>
)

) [S%S) [eS) 00
< a7 [ lon ()| dy+3 f\gn (ff(x+y)dx+2f|f(1’)|d$+ff(lx—yl)dx>
0 0 0 0
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lgn ()] dy + Zf 192(%)] (7 If(Z)IdH?ZfO f@)dz+ | |f(|2|)|d2>

-y

|90 ()| dy + 5 }O\gn(y)\ <7o|f(z)|dz+2”f|1 +z\f(2)|dz+ ||f|1>

Sszlgn )dy + 3 flgn )4l £l dy

5+20flh f lgn(y)|dy,  (using (P2))

S+ sl < e
Thus the theorem follows. )

/\

Theorem 2.11. A necessary and sufficient condition for F € Cy([0,00)) to be in
the range of the Fourier cosine transform on L([0,00)) is that (f,) converges in
LY([0,00)), where

(2.3) fulz) = / (1 - 2) F(t) cos(xt) dt, Vo € [0,00) and n=1,2,3,---
0

Proof. Assume that the sequence (f,) of functions as deﬁned in (2 3) converges
to f in L'([0,00)). We first observe that if ky(t) = X, (¢ ) (1= L) and hy,(
kn(t) - F(t), Vt € [0,00), n € N, then we have

e h, € L'([0,00)),Vn € N,

e C(hy) = fn € L*([0,00)), Vn € N, and hence C(f,) = hy,, Vn € N,

nx
2

o Clky)(u) = ;fl(l— L) cos(ut)dt = 1_20729“) = T g (Smg; )> = 7gn(u),

N2
where g, (z) = 5= <Sm,(f)> Vo > 0.

2

Since € : L([0,00)) — Co([0, 00)) is continuous, we have C(f) = lim €(f,) =
n— oo
lim h, = F. Conversely, assume that there exists f € L!([0,00)) such that F' =

n—oo

C(f). Using Fubini’s theorem, we get
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folz) = ;fl (1— L) F(t) cos(at) dt
= f(l — %) (Tf(y) cos(yt) dy) cos(xt) dt,
o _ \0
= [ A )(f (1-1) [cos(:c+y)t+cos(|:z:yt)]dt)d
0 0

y
() [C(kn) (z + ) + Ckn) (| — y])] dy

N[
OS
~

= 39 ff gn 1’+y) +gn(|m_y|)]

= (f *e gn) ().
Since (g, ) satisfies the properties (P1), (P2) and (P3) in the hypothesis of Theorem
2.10 (see [3, pp.137-138]), we get fn, = 7(f *c gn) — 7f as n — oo in L(]0,00)). O

Definition 2.12. ([11]) For f,g € L'([0,00)), the Fourier sine convolution . is
defined by (f #sc 9)(t) = 3 [ f(9)lg(|t — s[) — g(t + 5))ds, ¥t > 0.
0

Lemma 2.13. For every f,g,h € L*([0,00)) and o, 3 € C, (af + Bg) *sc h =
a(f xsc h) + B(g *sc ).
Lemma 2.14. If f,g,h € L'([0,00)), then (f *sc g) *sc h = f *sc (g *c h).

Proof. For = > 0,
A[(f *se g())o*sc h](z)

= 2 [ e )l — o)~ bl + )y
- f(ff oy —#|) - <y+z]dz)[h<|x—y|> b+ y)ldy

= f e f (ly = 2[) = g(y + 2|z = y|) = bz + y)ldyd=
(by Fub1n1 s theorem)

= Tf(Z) (?Q(Iy — z[)[A(Jz = y|) — h(z +y)]dy
0 Ooo
- J 9(y + 2)[h(|lz — y|) — h(z + y)}dy) dz

f(2) 709\5\ h(lex — z = s|) — h(z + z + s)]ds

|
o9

—fg h(lz —t+z|) — (x—i—t—z)]dt)dz

(using the change of variables s = y — z in the first integral and
t =y + z in the second integral)
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— :fof ( h(lz —z — s|]) — h(x + z + s)]ds
({g h(le —z—s|) — h(z+ 2+ s)]ds
- ofog( t[h(|z+ 2z —t]) — h(x — z+t)}dt> dz
= T (Jotente -+ s = e +-2 - 9
0 Ooo
+Ofg h(|lz — 2 — s|) — h(z + 2 + s)]ds
—709 h(le + 2z —t]) — (x—z+t)]dt>dz
SNe (fg [h(|z =z +s]) — h(|lz + = — s])]ds
0 Ooo
+ [ 9(s)[h(lz — z = s]) = h(z + z + 5)]ds

($)[h(lz — z — s])

+
o3
)

s) [P(lz — 2 +s]) —
x4+ z+ s)]dsdz

+ [g@®)[-h(lz+ 2z —t]) + h(|z — z + t|)]dt> dz
— h(|lz+ 2z — s|)]ds
—h(zx+ 2+ s)]ds) dz

Wz + 2z = s|) + h(lz — 2z — s])

i
0
— ?ﬂ@(?ﬂ@mw~w+sn+mu—z—ﬂﬂ@
0 0

|x—|—z—5)—|—h(x+z—|—s)]ds>dz

= Zof(z) <;fog( ) [Pl = z[ + s]) + h(||z — 2| = s[)] ds

- :fof fg
(‘since h(||lz — 2| + s|) +h(||w — z| —s])

B(le — =+ s]) + h(lz — 2 — s))

h(lz — @+ s[) + k(]2 =« — s))

and h(|z—z+s|) + h(|]z —x—s]) =

ZTﬂd«g%th—d%—
= 4[f #ae (9 % W) (@).

|x+z—s)—|—h(x+z—|—s)]ds)dz

ifx—22>0
ife—2<0

h(lr —z—s|)+h(lx —2z+s]))
(g*ch)(x+2))dz



Fourier Cosine and Sine Transformable Boehmians 53

Theorem 2.15.(Convolution theorem for Fourier sine transform on L'([0,00))) If
fig9€ Ll([ov 0)), then 8(f *sc g) = 8(f) - €(g).

Lemma 2.16. For f,g € L([0,00)), [If #sc gl < [fll1 lgllx and fu*scg = fscg
as n — oo in L1([0,00)), whenever f, — f as n — oo in L'(]0,00)).
Proof. For f,g € L'([0,)), we have
o0
Hf*schl = f |(f *scg)(5)|d5
0
1
2

= ZoZof(t)[g(\s—ﬂ)—g(s—kt)]dt s

< T a0~ ) — ot + ) drds

:%?|f(t)|T|9(|S—t|)—g(s+t)\dsdt

S%Zﬁf |(7°|g|u||du+fg |du>

:%?lf (flg( Idu+f|g |du+f|g )dt
0 0

= 11l N9l

Let f, — f as n — oo in L'(]0,00)). Using Lemma 2.13, we get
[ fr *se g = f *se glli = [(fn = f) *se glli < [ fn — fll1 [lglli — 0 as n — oo o

Theorem 2.17. Under the hypothesis of Theorem 2.10, we have f *s. g, — f as
n — oo in L([0, 00)).

Proof. Let € > 0. For each n € N, define 9, (s) = \f lgn(t)|dt, Vs € (0,00).
Then, using the property (P3) of (g,), we have, for each s > 0, lim ¢,(s) =
n—oo

hm |f(s)] f |gn(¢)|dt = 0 and from (P2), there exists M > 0 such that |1, (s)| <

s)]| f lgn(t)|dt < M|f(s)| € L*([0,00)), Vn € N. Applying Lebesgue dominated

[ee]
convergence theorem, we get f Y, (s)ds — 0 asn — oo. Now for each n € N, we have

(f *se gn)(2) = f(2) = gff [gn (|2 = yl) = gn(z +y)ldy — f(z)

%Of Nogn (|2 = yl) + gn(x + y) — 290 (x + y)]dy — f(z)

= (f *e gn)( - ff gn x"’y)dy

Therefore,
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I %seg) = Fli < 11(CF %e gn) fm+fff Ygn( + y)dy| da
< I(f *e gn) f||1+ff|f N|gn(z + y)|dydz

1 %ega) = Flla + [ 1F@)] J lga(a + y)ldody
0 0
(by Fubini’s theorem)

oo
< N *egn) = flu+ [ 1f(y Iflgn )|dudy
0
= ”(f*cgn)*f||1+fwny
0
which tends to zero as n — oo, by using Theorem 2.10. O

Now, we present a characterization theorem for the range space of the Fourier sine
transform on L([0,0)).

Theorem 2.18. Let F € Cy([0,00)). Then, F € §(L'([0,00))) if and only if (f,,)
converges in L!([0,00)), where

n

f t
(2.4) fulz) = 1—— ) F(t)sin(zt) dt, Vo € [0,00) and n =1,2,3,---
[(-3)

hn(t) = X, (1) (1= L) F(t),vt € [0,00), Vn € N, then we have 8(f,) = §]
hn,¥n € N. Using the continuity of 8, we get §(f) = lim 8(f,) = h_}m Iy
n—oo n o0

Conversely, assume that there exists f € L!([0,00)) such that F = 8(f).
Now following the notations in the proof of Theorem 2.11, we get

folz) = f(l — LY F(t) sin(at) dt = f (1-1) (f f(y)sin(yt) dy) sin(zt) dt
ﬂw(gu—ﬂwau—mw—wau+m>wﬁdy

ng Fubini’s theorem)

} =

Proof. Suppose that f, — f as n — oo in L([0,)), for some f € L([0,0)). I
h

n)
F.

&, o—3Q

—-

0
1
2
(usi

= % E)f f(y) [e( n)(|$ - y|) - e(kn)(z + y)} dy,
Since (g,,) = (7~ 1C(k,,)) satisfies properties (P1), (P2) and (P3), applying Theorem
2.17, we obtain that f, = 7(f *sc gn) — 7f as n — oo in L1([0,0)). O

3. Boehmian Spaces

Before starting this section, we briefly recall the general construction of
Boehmian space and two notions of convergence in the context of Boehmian space
from the literature [6, 9].

Let G be a topological vector space, (S,*) be a commutative semi-group, *
G x § — G satisfy the following conditions.
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(i) If f,g € G and € 5, then (f + g) x4 = (f ) + (g % ),
(i) If fe G, ¢ € Sand a € C, then (af)*¢ = a(f x ),

(iii) If f € G and ¢,1) € S, then (f xp) x ) = f* (¢ ).

Let A be a collection of sequences from S with the following properties.

(a) If f, > fasn — oc0in G and () € A, fnxpn, = f asn — oo,

(b) If (¢n), (¥n) € A, then (¢, * 1,) € A.

Let A = {{(fn),(pn)} : fn € G, (pn) € A, and fr, x 0, = fn *opn, YV n,m €
N}. An equivalence relation ~ on A is defined by {(fn), (¢n)} ~ {(gn), (¥n)} if
fn*Um = gm *on, YV n,m € N. The collection of all equivalence classes induced by
~ on A is called the Boehmian space B = B(G, (5, %), *, A) and any element of B is

denoted by X = [%} We identify G as a subset of B, through the identification

f [M} where (p,) € A is arbitrary. For X = [@} Y = [M} €3,

(‘pn) (‘Pn) (wn)
a € Candn € S, wealsodeﬁneXwLY:[W},aX: [%},
Xxn= {%} and X Y = [((Sf::i:‘))}, provided g, € S, Vn € N.

Lemma 3.1. If X = [((3;”))} € B, then X x ¢ = fr € G for all k € N.

Definition 3.2. A sequence (X,,) of Boehmians is said to d-converge to X in B

(denoted by X, 5 X asn — o0) if there exists (6,) € A such that X, % 0,
X xdp € G,Vn,k € N and for each k € N, X,, xd, > X xd asn — oo in G.

Theorem 3.3. X, % X asn — oo if and only if there exist fnr, fr € G and
(6n) € A such that X,, = [({&’;)}, X = [Eg:” and for — fr asn — oo in G,
vk € N.

Definition 3.4. A sequence (X,,) of Boehmians A-converges to X in B (denoted

by X, A Xasn— 00) if there exists (§,,) € A such that (X,,— X)*d, € G, Vn € N
and (X, — X)*d, > 0asn — oo in G.

Now we prove some auxiliary results required to construct the Fourier cosine
transformable Boehmian space Bl = B(L([0,0)), (L1(]0,00)), *¢), *c, Ay ), where
Ay is the the class of all sequences (,,) from L'([0,00)) satisfying the following
con(iiotionsz -

(a) [0n(s)ds =1,Yn e N; (b) [[6,(s)|ds < M, Vn € N, for some M > 0; and (c)
0

0
supp d, — {0} as n — oo, that is, there exists N € N such that §,(t) =0, Vt > §
and n > N.

Lemma 3.5. If f € L'([0,00)) and (5,,) € Ay, then f .8, — f asn — 0o in
L*([0,00)).

Proof. Let § > 0 be given. By property (c) of (6,), (P3) holds true for (d,). Thus
from Theorem 2.10, we get f *.d, — f as n — oo in L1([0, 0)). O
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Lemma 3.6. If f, — f asn — oo in L'([0,00)) and (5,) € Ay, then f, x.0, — f
as n — oo in L1([0,00)).

Proof. Consider |[(fn *c 6n) — fllv < [[(fn — f) *¢ dnlls + |[f *c 6 — fll1, VR € N.
The second term in the right hand side of the above inequality tends to zero, by
the previous lemma. Using the estimate ||f *. gll1 < ||fll1llgll1 (See the proof of

Lemma 2.4), we have [|(fn = f) *cOnlls < [|(fa = f)lh f [0 ()] dt < M[(fn— )l =
0 as n — oo. O
Lemma 3.7. If (6,), (¥n) € A4, then (8, *cn) € Ag.
Proof. Using Fubini’s theorem, we get

:fo((sn ke n)(s) ds T T 1605 + 1)+ 8u(l5 — )] o (t) dt ds

Il
N[
& oY—

3

f (s+t)+ 0n(|s —t])] dsdt

N[ =
|O

Sy
3
—~
~
~—

N[

5(u) du+ T&n(|u|)du] dt

S
3
—
~~
~

N[=

O (u) du + fo On(—u) du + }Oén(u) du} dt

f du+f5 du+f5 }dt
i 0

n(t) [Of5nu u] t:ofzpnt Ydt =1

o0

By a similar argument, it is easy to verify that f [(8p, *c W) (8)]ds < My Mo

& oy Sty Stmg S —go—
<=
3
S

Il
OHg N[

where M, M, € R are such that f |6, (t)|dt < My and f [t (8)|dt < My, Vn € N.

Since supp (0y, *c ¥ ) C [Supp (5 +supp ¥,] U ([0, oo) N [ supp 6, — supp ¥,])U
([0, 00) N [supp ¥, — supp 6y]), we get supp (d,, *c ¥n) — {0} as n — co. Hence it
follows that (&, *. ¥n) € AL O

Thus the Fourier cosine transformable Boehmian space B! is constructed.

Example 3.8. If ¢,,(t) = nX o 1 (1) Vt € [0,00), ¥n € N, then (¢,,) € A and hence

C(¢rn) — 1, uniformly on compact subsets of [0, 00), which will be proved later in
Lemma 4.1. Since %, is commutative, we have ¢, %@, = Oy ¥ Om, Ym,n € N. That

is [(%)} € BL. From the definition of € on B!, it is clear that €(X) = lim €(¢,) =
(én) ¢ ¢ n— 00

1 (see Definition 4.2). Since 1 € C(]0,00)) \ Co([0,0)), this Boehmian does not
represent any element of L!([0,00)).

Next, we prove the auxiliary results required to construct another Boehmian
space Bl = B(L(]0,00)), (L*([0,00)), *¢),s *se, A ).

Lemma 3.9. If f € L'([0,0)) and (6,) € Ay, then f %5 0p — f asn — 0o in




Fourier Cosine and Sine Transformable Boehmians 57

LY([0,00)).

Proof. Since (6,) € Ay satisfies (P1),(P2) and (P3), the proof directly follows
from Theorem 2.17. O

Lemma 3.10. If f,, — f asn — oo in L*([0,00)) and (6,) € Ay, then fn*sc0n — f
as n — oo in L([0,00)).

Proof. Using Lemma 2.13, Lemma 2.4 and Lemma 3.9, we obtain the proof of this
lemma which is similar to that of Lemma 3.6. O

Thus, we constructed the Fourier sine transformable Boehmian space B!.

1
- Tia >
Example 3.11. Define f(z) = { - forz>0

Then f is bounded,
0 for z < 0.
f(0) =0 and f & L'([0,00)) but f'(x) € Ll([O 00)). Choose a smooth function 1

with compact support on [0, c0) such that f Y'(t)dt = 1. If ¢y (z) = nyp/ (na), Vo €
[0,00), ¥n € N, then () € Ay, We clalm that X = [%} e B\ LY([0, 0)).

To justify the example, we first claim that f *,., € L'([0,00)), ¥n € N.
Since f(0) = 1(0) = 0 and f is bounded, we have

1(F *se ) (@)
= 3{J alle = s T )nte+ )t
= 3| [f@hnle—y dy+ff Y (y —xdy—ff Yoo (2 + y)dy
— |- -+ T - Jitdivinte + )
= 3 |[=fWe(n(z -y)) o+gf Y)Y (n(z —y))dy + [f(y)(nly — )5
= J 7 Winly — 2y + [F@)U0( + o)IF - ] 7 Wit + y))dy\
= 3|[ it = - T @it - - et + )
< é(bﬂ W= 9)ldy -+ ] 1) [l — )y
[t <:c+y>>|dy)

- (f PGk = oDldy + TGl + )y )
Using Fubini’s theorem, we get

”f *sc wnlll
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Y

< (1701 [lvtale —sbideds + F170)] Tlotate +)idaay )
sé(fww»fwnwm@+fuwnfwmwwﬁ

T1F W) T 16(ns)ldsdy < +o0

0 0
Applying similar arguments as in the proof of Lemma 2.14 and using Lemma
2~67 we get (f *sc ¢n) *sc 7/}m = f *sc (wn *c wm) = .f *sc (1/1m *e wn) = (f *sc wm) *sc
¥n, ¥Ym,n € N. Thus, we obtain that X € B! and by the choice of f, X does not
represent any function in L([0, 00)).

4. Extended Fourier Cosine and Sine Transforms

First, we prove the following lemma which will be required to define the extended
Fourier cosine and sine transforms.
Lemma 4.1. If (6,,) € Ay, then C(d,) — 1 as n — oo uniformly on compact subset
of [0, 00).
Proof. Let K be a compact subset of [0,00). Let ¢ > 0 be given. Choose
A > 0, M > 0 and a positive integer N such that ¢ < A for all t € K,
Jo 16n(t)dt < M,¥n € N and supp 6, C [0,€) for all n > N. For ¢t € K and
n > N, applying mean- Value theorem, we get

IC(6,)(t) — 1] = | f<5 ) cos(ts) ds — f5 yds| < [16n(s)||cos(ts) — 1| ds
0
= f|5 )| | cos(ts) — 1| ds = [10n(s)||ts||sinz|ds
0
(for some 0 < z < ts)
< Aef|5 \ds<Aef|(5 Jds < AMe.
This completes the proof O

Definition 4.2. For X = [E(sf:g] € Bl we define the extended Fourier cosine

transform €(X) by
E(X)(t) = lim C(fn)(t), YVt € [0,00).

n—oo

Note that the above limit exists. Indeed, given a compact subset K of
[0,00), some k € N can be chosen so that C(d;) # 0 on K, because C(d,) — 1

as n — oo in C([0,00)). Then, from Theorem 2.8, it follows that C(f,) =

Cfn)Cok) _ C(fn*cdk) Clr*edn) _ CUK)-CUO) _, Cfx)
C(dk) B C(dk) €(0k) B C(dk) C(or)

formly on K. If {(gn),(¢n)} is any other representative of X, then we have
C(fn)(s) - C(¥m)(s) = Clgm)(s) - C(6n)(s) for all m,n € N and s > 0. Now
for a given ¢t € [0,00), choose m,k € N such that C(i,)(t) # 0 # C(dk)(1).

Then, nl;ngo Clgn)(t) = g((i:"n))((?) = gg’;;gg = nl;rrgo C(fn)(t). Thus the above

as n — 00, uni-
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limit is independent of the choice of representatives of X. Further, by using
the fact that C(f,) converges uniformly on compact subsets of [0,00), we have
e(X) = lim €(f) € C((0,))

Theorem 4.3. The extended Fourier cosine transform € : Bl — C([0,00)) is
consistent with € : L1([0,00)) — Co([0, 00)).
Proof. Let f € L'(]0,00)). Then for any (J,) € A, the Boehmian {(f*cé")] is

representing f in Bl. Then € ([%D = li_>m C(f *¢ 6p) = li_>m C(f) - €(5,)

C(f), since C(d,) — 1 as n — oo. Hence the theorem follows. O

Lemma 4.4. If X = [gg} € B, then C(8;) - €(X) = C(f), Yk € N.

Proof. Fix k 6 N and ¢ > 0, arbitrarily. If C(d;)(t) # 0, then by definition,

C(X)(t) = 8(6 )(t) This implies immediately that C(dx)(t) - €(X)(t) = C(fx)(¢). If
C(dx)(t) = 0, choose m so large that C(d,,)(t) # 0. Since [g:” € Bl, we have
fr *c¢ 0m = fm *c 0k. Applying Fourier cosine transform on both sides, we obtain
that €(fx) - C(0,m) = C(fm) - €(dx) and hence C(f;)(t) = nJPCEO — o =
C(k)(t) - C(X)(2)- o

Theorem 4.5. The extended Fourier cosine transform € : Bl — C([0,00)) is
linear.

The proof of this theorem is straightforward. a

Theorem 4.6. The extended Fourier cosine transform € : Bl — C([0,00)) is
one-to-one.

Proof. Assume that X = [55 ” Y = [((i:))} € Bl are such that €(X)(t) = €(Y)(¢)

for all ¢ € [0,00). From Lemma 4.4, we have C(d,)(t) - €(X)(¢t) = C(fn)(t) and
C(n)(t) - €(Y)(t) = C(gn)(t), Yn € N and V¢ € [0,00). Thus for n,m € N and
t € [0,00), we have €(g, *c 6,)(t) = €(3,)(1) - Elgn)() = C(E)(E) - C(n) (1) -
X)) = Cm)(E) - €6,)(1) - X)) = C(m)(E) - €f)(E) = Cfu %o (D).

Since € : L'([0,00)) — Cy(]0,00)) is one-to-one, we get f,, *c Y = Gm *c On and
hence X =Y. O

Theorem 4.7. (Convolution theorem) If X,Y € Bl and h € L'([0,0)), then
C(X %, h) =€(X)-C(h) and €(X x. Y) = €(X) - €(Y).

Proof. Let X = {E(J;Z” Y = [%} € Bl and h € L'([0,00)). Then we have
€N k) = lim €(f,ch) = lim (€(f,)- (1) = ( lim €(£,))-€(h) = €(X)-€(h)

and €(X «.Y) = Tim €(fy +¢gn) = lim (€(f,) - C(gn)) = €(X) - €(Y). O

Theorem 4.8. The extended Fourier cosine transform € : Bl — C([0,00)) is
continuous with respect to d-convergence and A-convergence.
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Proof. Let X, % X asn — ooin BL. Then, by Theorem 3.3, there are functions
Jnms fm € LY([0,00)) and (8,,) € A4 such that X,, = [%}, X = [%}
and fn,x — fr as n — oo in L([0,00)), for each k¥ € N. Now the continuity of
€ : LY0,00) = Cp([0,00)) implies that C(f,x) — C(fx) as n — oo uniformly on
[0,00). Let H be a compact subset of [0,00). Choose r > 0 and k¥ € N such
that 0 < r < |€(d,)| on H,¥n > k. Now [€(X,) — €(X)| = [EUn=fhl <
[C(frn.e)=C(fr)l

Let X,, A X asn — oo. Then there exists (6rn) € Ay such that (X, —X)*.0, €
LY([0,00)) and (X, — X) *. 0, — 0 as n — oo in L'([0,00)). Let H and r be as
in the previous argument. As the Fourier cosine transform is continuous from
L([0,00)) into Cy([0,00)), we have |€[(X,, — X) *. d,]| — 0 as n — oo uniformly

_ [C(0n)-E€(Xn)—COn) EX)| _ [E(Xn#edn)—C(Xxcdn)| _
on H. Now |€(X;) — €(X)| = €] = €] =
|CU( X —X)*0,]] < [CU(X—X) %05 ]]

€(n)l = T

n

— 0 uniformly on H as n — oo.

— 0 as n — oo uniformly on H. O

n
Theorem 4.9. Let g,(s) = [ (1— L) F(t)cos(ts)dt,Vs € [0,00), n € N, where

0
F € C(]0,00)) be arbitrary. Then, a necessary and sufficient condition for F' €
¢(Bl) is that g, € BL, Vn € N and (g,,) is é-convergent in BL.

Proof. Suppose there exists X = [EZ } € B! such that F = ¢(X). Then
(gn *c Mm)(u)

gn(8)[1m (u + ) + 1 (Ju — s])] ds

mt9) = )] (1 £) @000 contes ) s

0

(1-5)eX)() :fo[nm(u + 5) + T (Ju — )] cos(ts) ds d

) ;fonm( v)[cos(t(v + u)) + cos(t(v — u))] dv dt

N|—=

=

N[ =
%30%30%80\8

—~
—
I
Sl
~—
A
\/
—
~

o0

(t) | nm(v) cos(tv) cos(tu) dv dt
0
t)C

) ( )( ) (777”)( )COb(tU) dt

- %) C(hum)(t) cos(tu) dt, (by Lemma 4.4).

—~ —~ —~ ©
— —
| |
Sl 3
SN—"

—_

I
O30 —3P—3 wI=

By using the proof of the necessity part of Theorem 2.11, we get gn*.nm € L([0,00))
for n,m € N and g, *¢ 9 — Thy, as n — oo in L([0, 00)), for each fixed m € N.

If X, = [%}, X = {(ETW}Z")’)}, then necessity follows from Lemma 3.1.

To prove the sufficiency part, we assume that there exists X = [EZ—:” € B!

such that X,, > X as n — oo in B! where X,, = [%} € Bl. This implies
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that g, *c Ym = Xpn *¢ Ym — X *c Py asn — oo in L1([0,00)), for each fixed
m € N. By using similar arguments to those involved in the necessity part, we
get (gn *c ¥m) = C(fn,m), where fr m(t) = x;,.(t) (1= L) F(t) - C(tm)(t). Since
C(fn.m) € L1([0,00)), we have C(gn *c¥m) = C(C(fnm)) = fa.m. Further, using the
continuity of the Fourier cosine transform on L([0, 00)), we also have C(X *.1,,) =
nlgl;o Clgn *c Ym) = nlgr;o frm =F - C(¢y,). Since C(¢,) — 1 as m — oo, it follows

that €(X) = mlgnoo Clhm) = n}l_r}Iloo C(X *¢ ) = "}gnooF - C(¢y,) = F. O

Definition 4.10. We define the extended Fourier sine transform &(X) of X =
(()/(6)] € BL by S(X)(1) = lim 8(£,)(1). ¥t € [0,50).

Since the proofs of the following six theorems are analogous to those of the
corresponding theorems for the extended Fourier cosine transform on B!, we leave
out the details.

Lemma 4.11. (Consistency) For each f € L'([0,0)), we have S(f) = 8(f).
Theorem 4.12. For X = [(f,)/(0,)] € BL, () - &(X) = 8(fx),Vk € N.
Theorem 4.13. The extended Fourier sine transform & : Bl — C([0,00)) is linear.

Theorem 4.14. The extended Fourier sine transform & : Bl — C([0,00)) is
one-to-one.

Theorem 4.15. The extended Fourier sine transform & : Bl — C(]0,00)) is
continuous with respect to d-convergence and A-convergence.

Theorem 4.16. If X € Bl and h € L'([0,00)), then &(X *s. h) = &(X) - C(h).

It is also interesting to note that if X *,. Y is defined by [(fn *sc gn)/(Pn *c ¥n )],
for X = [(fn)/(¢n)] € Bl and Y = [g”] € Bl, then X *,. Y € Bl, and we have the
following theorem.

Theorem 4.17.(Generalized convolution theorem) If X € Bl and Y € B!, then
S(X %5 V) = &(X) - €(Y).

Theorem 4.18. Let F € C([0,00)). Then, F € &(BL) if and only if (on) 6-
converges in BL, where p,(s) = [ (1 — L) F(t)sin(ts) dt, Vs > 0, Vn € N.
0

Proof. Suppose there exists X = [(hy,)/(n,)] € Bl such that F = &(X). Then by
Fubini’s theorem and by a simple computation, we obtain that

(0n *sc 1m) (11) N
of (1-1)e(X)() Ofnm( v)[sin(t(u + v)) + sin(t(u — v))] dv dt
(1-

L)Y &(X)(t) [ nm(v) sin(tu) cos(tv) dv dt
0

1
2
n

=/
0
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(1= L)Y S(X)(t) - €(nm)(t) sin(tu) dt

I
3I9—3

= [ (1= L) 8(hy)(t)sin(tu) dt (by Theorem 4.12).
0

From the proof of Theorem 2.18, we get 0, *sc m € L1([0,00)), ¥n,m € N and for
each m € N, gy, *5¢ NMm — Thm as n — oo in Ll([ov OO)) If X, = [(Qn *sc nm)/(nm)]v
X = [(whm)/(nm)], then necessity follows by using the fact that X, *s. n, =
On *sc Mm and X kg Ny = Thyy, Yn,m € N.

Suppose that there exists X = [(hy)/(¥m)] € Bl such that X, % X asn — oo
in Bl, where X,, = [(0n *sc ¥r)/(¥)] € BL. Then, for each m € N, g, *sc Uy =
X *ge U — X %4 as 1 — 00 in Ll([O, 00)). Argumg as before, we have (g, *s¢
Ym) = 8(fn,m), Where fy m(t) = X(0,n] ( ) F(t) - Clm)(t ), vt > 0. Since
8(fn.m) € L1([0,00)), we have 8(0n *sc ¥m) = 8(8(fn.m)) = fn.m. Further, we have
S(X uc ) = . 8(0n ec Vi) = . oo = F - €(th). Now by using Lemma
41, we get G(X) = lim 8(hy) = lim S(X sy th) = lim F-C(th) =F. O
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