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TRANSFORMS AND CONVOLUTIONS
ON FUNCTION SPACE

Seung Jun Chang and Jae Gil Choi

Abstract. In this paper, for functionals of a generalized Brownian mo-
tion process, we show that the generalized Fourier-Feynman transform
of the convolution product is a product of multiple transforms and that
the conditional generalized Fourier-Feynman transform of the conditional
convolution product is a product of multiple conditional transforms. This
allows us to compute the (conditional) transform of the (conditional) con-
volution product without computing the (conditional) convolution prod-
uct.

1. Introduction

For f ∈ L2(Rn), let the Fourier transform of f be given by

F(f)(u) =
∫

Rn

eiuvf(v)dmn(v)

and for f, g ∈ L2(Rn), let the convolution of f and g be given by

(f ∗ g)(u) =
∫

Rn

f(u− v)g(v)dmn(v),

where dmn(v) is the normalized Lebesgue measure (2π)−n/2dv on Rn. The
Fourier transform F satisfies the property of Parseval’s relation in the form

∫

Rn

f(v)g(v)dmn(v) =
∫

Rn

F(f)(v)F(g)(v)dmn(v).

Furthermore F acts like a homomorphism with convolution ∗ and ordinary
multiplication on L2(Rn). More precisely, one can see for f, g ∈ L2(Rn)

F(f ∗ g) = F(f)F(g)
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and

F(f) ∗ F(g) = F(fg).

Let C0[0, T ] denote one-parameter Wiener space, that is, the space of real-
valued continuous functions x(t) on [0, T ] with x(0) = 0. In [1] Brue introduced
an L1 analytic Fourier-Feynman transform(FFT) for functionals on Wiener
space. There has been a tremendous amount of papers (including Lp-theory,
1 ≤ p ≤ 2, see [2, 12]) in the literature on the FFT theory. The FFT on Wiener
space C0[0, T ] is a transform of functionals which is somewhat analogous to the
Fourier transform of functions.

In [8, 9, 10, 11, 15], Huffman, Park, and Skoug defined an Lp analytic
FFT, a convolution product(CP), a conditional FFT(CFFT), and a conditional
CP(CCP) for functionals on Wiener space and obtained various results involv-
ing and relating the FFT, the CP, the CFFT and the CCP. In particular, they
showed that the FFT of the CP is the product of transforms and that the con-
ditional transform of the conditional convolution is the product of conditional
transforms.

In this paper, we also study some relationships between a generalized FFT
(GFFT) and a CP, and between a conditional GFFT(CGFFT) and a CCP on a
very general function space Ca,b[0, T ] rather than on the Wiener space C0[0, T ].
The function space Ca,b[0, T ] induced by a generalized Brownian motion process
was introduced by J. Yeh [16] and was used extensively by Chang and Chung
[6]. But our results between the GFFT and the CP, and between the CGFFT
and the CCP on function space are different from those in [8, 9, 10, 11, 15].
For example, the GFFT does not act like a homomorphism on the space of
functionals on Ca,b[0, T ].

The Wiener process used in [8, 9, 10] is stationary in time and is free of drift
and the Gaussian process used in [11, 15] is nonstationary in time and free of
drift. But the stochastic process used in this paper as well as in [3, 4, 5, 6, 7, 16],
is nonstationary in time and is subject to a drift a(t). However, when a(t) ≡ 0
and b(t) = t on [0, T ], the general function space Ca,b[0, T ] reduces to the
Wiener space C0[0, T ].

2. Definitions and preliminaries

In this section we briefly list some of the preliminaries from [3, 4, 7] that
we need to establish our results in Sections 3 and 4 below; for more details see
[3, 4, 7].

Let (Ca,b[0, T ],B(Ca,b[0, T ]), µ) denote the function space induced by a gen-
eralized Brownian motion process Y determined by a(t) and b(t), where
B(Ca,b[0, T ]) is the Borel σ-algebra induced by sup-norm, see [16] and [17,
Chapters 3 and 4]. We assume in this paper that a(t) is an absolutely con-
tinuous real-valued function on [0, T ] with a(0) = 0, a′(t) ∈ L2[0, T ], and b(t)
is a strictly increasing, continuously differentiable real-valued function with



TRANSFORMS AND CONVOLUTIONS ON FUNCTION SPACE 399

b(0) = 0 and b′(t) > 0 for each t ∈ [0, T ]. Then we can consider the coor-
dinate process X : D × Ca,b[0, T ] → R given by X(t, x) = x(t) which is the
continuous realization of Y [17, Theorem 14.2]. That is, for any t ∈ [0, T ] and
x ∈ Ca,b[0, T ] we have

X(t, x) = x(t) ∼ N(a(t), b(t)).

A subset B of Ca,b[0, T ] is said to be scale-invariant measurable(s.i.m.) pro-
vided ρB is B(Ca,b[0, T ])-measurable for all ρ > 0, and a scale-invariant mea-
surable set N is said to be a scale-invariant null set provided µ(ρN) = 0 for all
ρ > 0. A property that holds except on a scale-invariant null set is said to hold
scale-invariant almost everywhere(s-a.e.). If two functionals F and G defined
on Ca,b[0, T ] are equal s-a.e., then we write F ≈ G.

Let L2
a,b[0, T ] be the set of functions on [0, T ] which are Lebesgue measurable

and square integrable with respect to the Lebesgue-Stieltjes measures on [0, T ]
induced by a(·) and b(·): i.e.,

L2
a,b[0, T ] =

{
v :

∫ T

0

v2(s)db(s) < ∞ and
∫ T

0

v2(s)d|a|(s) < ∞
}

,

where |a|(·) is the total variation function of a(·). Then L2
a,b[0, T ] is a separable

Hilbert space with inner product defined by

(u, v)a,b =
∫ T

0

u(t)v(t)d[b(t) + |a|(t)].

In addition, for each v ∈ L2
a,b[0, T ], the Paley-Wiener-Zygmund(PWZ) stochas-

tic integral 〈v, x〉 exists for µ-a.e. x ∈ Ca,b[0, T ]. If v is of bounded variation
on [0, T ], then the PWZ stochastic integral 〈v, x〉 equals the Riemann-Stieltjes
integral

∫ T

0
v(t)dx(t) for s-a.e. x ∈ Ca,b[0, T ]. For more details, see [7].

Remark 2.1. For each v ∈ L2
a,b[0, T ], the PWZ stochastic integral 〈v, x〉 is a

Gaussian random variable on Ca,b[0, T ] with mean
∫ T

0
v(s)da(s) and variance∫ T

0
v2(s)db(s). Note that for all u, v ∈ L2

a,b[0, T ],

(2.1)

∫

Ca,b[0,T ]

〈u, x〉〈v, x〉dµ(x)

=
∫ T

0

u(s)v(s)db(s) +
∫ T

0

u(s)da(s)
∫ T

0

v(s)da(s).

Hence we see that for all u, v ∈ L2
a,b[0, T ],

∫ T

0
v(s)u(s)db(s) = 0 if and only if

〈u, x〉 and 〈v, x〉 are independent random variables.

Let

C ′a,b[0, T ] =
{

w ∈ Ca,b[0, T ] : w(t) =
∫ t

0

z(s)db(s) for some z ∈ L2
a,b[0, T ]

}
.
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For w ∈ C ′a,b[0, T ], with w(t) =
∫ t

0
z(s)db(s) for t ∈ [0, T ], let Dt : C ′a,b[0, T ] →

L2
a,b[0, T ] be defined by the formula

(2.2) Dtw = z(t) =
w′(t)
b′(t)

.

Then C ′a,b ≡ C ′a,b[0, T ] with inner product

(w1, w2)C′a,b
=

∫ T

0

Dtw1Dtw2db(t) =
∫ T

0

z1(t)z2(t)db(t)

is a separable Hilbert space. Furthermore, (C ′a,b[0, T ], Ca,b[0, T ], µ) is an exam-
ple of abstract Wiener space. For more details, see [13].

Note that the two separable Hilbert spaces L2
a,b[0, T ] and C ′a,b[0, T ] are iso-

morphic under the linear operator given by equation (2.2), but they are not
isometric.

For w ∈ C ′a,b[0, T ], with w(t) =
∫ t

0
z(s)db(s) for t ∈ [0, T ], we will use the

notation (w, x)∼ instead of 〈z, x〉 = 〈Dtw, x〉. Then we have the following
assertions.

(1) For each w ∈ C ′a,b[0, T ], the random variable x 7→ (w, x)∼ is Gaussian
with mean (w, a)C′a,b

and variance ‖w‖2C′a,b
.

(2) (w, αx)∼ = α(w, x)∼ = (αw, x)∼ for any real number α, w ∈ C ′a,b[0, T ]
and x ∈ Ca,b[0, T ].

(3) If {w1, w2, . . . , wn} is an orthonormal set in C ′a,b[0, T ], then the random
variables (wi, x)∼’s are independent.

(4) Let g be an element of C ′a,b[0, T ] with g(t) =
∫ t

0
α(s)db(s) for some

α ∈ L2
a,b[0, T ]. Then

(w, g)∼ =
∫ T

0

Dtwdg(t) =
∫ T

0

z(t)α(t)db(t) = (w, g)C′a,b
.

We denote the function space integral of a B(Ca,b[0, T ])-measurable func-
tional F by

E[F ] =
∫

Ca,b[0,T ]

F (x)dµ(x)

whenever the integral exists.

Remark 2.2. (1) For s, t ∈ [0, T ] with s < t, we have the facts that

(2.3) E[x(t)] = a(t) and E[x(s)x(t)] = a(s)a(t) + b(s).

(2) Let w ∈ C ′a,b[0, T ]. Then

(2.4)
E[(w, x)∼] = E[〈Dtw, x〉] =

∫ T

0

Dtwda(t)

=
∫ T

0

DtwDtadb(t) = (w, a)C′a,b
.
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(3) Let g be an element of C ′a,b[0, T ] with g(t) =
∫ t

0
α(s)db(s) for some

α ∈ L2
a,b[0, T ]. Then using equation (2.1) we have that for each t ∈ [0, T ]

(2.5)

E[x(t)(g, x)∼] = E[〈χ[0,t], x〉〈α, x〉]

=
∫ T

0

χ[0,t](s)da(s)
∫ T

0

α(s)da(s) +
∫ T

0

χ[0,t](s)α(s)db(s)

= a(t)(g, a)C′a,b
+ g(t).

3. Transform and convolution on function space

In this section we define the GFFT and the CP on function space Ca,b[0, T ].
We then investigate a relationship between the GFFT and the CP.

Throughout this paper we will assume that each functional F (or G) we
consider satisfies the conditions:

(3.1) F : Ca,b[0, T ] → C is s.i.m. and s-a.e. defined,

and

(3.2) Ex

[|F (ρx)|] < ∞ for each ρ > 0.

First we state the definition of the GFFT.

Definition 3.1. Let C+ = {λ ∈ C : Re(λ) > 0} and let C̃+ = {λ ∈ C : λ 6=
0 and Re(λ) ≥ 0}. Let F satisfy conditions (3.1) and (3.2) above. If there
exists a function J∗(λ) analytic in C+ such that J∗(λ) = Ex[F (λ−1/2x)] for
all λ > 0, then J∗(λ) is defined to be the analytic function space integral of F
over Ca,b[0, T ] with parameter λ, and for λ ∈ C+ we write

Eanλ [F ] ≡ Eanλ
x [F (x)] = J∗(λ).

For λ ∈ C+ and y ∈ Ca,b[0, T ], let

Tλ(F )(y) = Eanλ
x [F (y + x)].

For p ∈ (1, 2] we define the Lp analytic GFFT, T
(p)
q (F ) of F , by the formula

(λ ∈ C+),
T (p)

q (F )(y) = l.i.m.λ→−iqTλ(F )(y)

if it exists; i.e., for each ρ > 0,

lim
λ→−iq

∫

Ca,b[0,T ]

∣∣Tλ(F )(ρy)− T (p)
q (F )(ρy)

∣∣p′dµ(y) = 0,

where 1/p + 1/p′ = 1. We define the L1 analytic GFFT, T
(1)
q (F ) of F , by the

formula (λ ∈ C+)
T (1)

q (F )(y) = lim
λ→−iq

Tλ(F )(y)

if it exists.
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We note that for 1 ≤ p ≤ 2, T
(p)
q (F ) is defined only s-a.e.. We also note that

if T
(p)
q (F ) exists and if F ≈ G, then T

(p)
q (G) exists and T

(p)
q (G) ≈ T

(p)
q (F ).

Next we give the definition of the CP on function space Ca,b[0, T ].

Definition 3.2. Let F and G be functionals on Ca,b[0, T ]. For λ ∈ C̃+, we
define their CP (F ∗G)λ (if it exists) by

(F ∗G)λ(y) =

{
Eanλ

x

[
F

(
y+x√

2

)
G

(
y−x√

2

)]
, λ ∈ C+

E
anfq
x

[
F

(
y+x√

2

)
G

(
y−x√

2

)]
, λ = −iq, q ∈ R, q 6= 0.

Remark 3.3. (1) When λ = −iq, we denote (F ∗G)λ by (F ∗G)q.
(2) Our convolution is not commutative.

To obtain our main result, we need the following lemma.

Lemma 3.4. Let Y1, Y2 : [0, T ]× Ca,b[0, T ]× Ca,b[0, T ] → R be given by

Y1(t; x1, x2) =
x1 + x2√

2
and Y2(t; x1, x2) =

x1 − x2√
2

.

Then {Y1 : t ∈ [0, T ]} and {Y2 : t ∈ [0, T ]} are independent processes.

Proof. Since the processes are Gaussian, it suffices to show that for every t, s ∈
[0, T ],

Ex1 [Ex2 [Y1(s; x1, x2)Y2(t; x1, x2)]]
= Ex1 [Ex2 [Y1(s; x1, x2)]]Ex1 [Ex2 [Y2(t;x1, x2)]].

By equation (2.3), we can obtain that

Exk
[xk(t)] = a(t) and Exk

[xk(s)xk(t)] = min{b(s), b(t)}+ a(t)a(s)

for k = 1, 2. Using these and direct calculations, we obtain the desired result.
¤

We are now ready to establish one of our main results. In next theorem, we
show that the GFFT of the CP is the product of multiple GFFTs.

Theorem 3.5. Let F and G be functionals on Ca,b[0, T ]. Assume that

T
(p)
2q

(
T

(p)
2q (F )

)
, T

(p)
2q

(
T

(p)
2q (G(− · ))(− · ))

and T
(p)
q

(
(F ∗G)q

)
all exist. Then

(3.3)
T (p)

q

(
(F ∗G)q

)
(y)

= T
(p)
2q

(
T

(p)
2q (F )

)( y√
2

)
T

(p)
2q

(
T

(p)
2q (G(− · ))(− · ))

(
y√
2

)

for s-a.e. y ∈ Ca,b[0, T ].
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Proof. In view of the definition of the GFFT and the CP, it will suffice to show
that

Tλ

(
(F ∗G)λ

)
(y) = T2λ

(
T2λ(F )

)
(y/

√
2)T2λ

(
T2λ(G(− · ))(− · ))(y/

√
2)

for λ > 0. But for all λ > 0,

Tλ

(
(F ∗G)λ

)
(y)

= Ex1 [(F ∗G)λ(y + λ−1/2x1)]

= Ex1

[
Ex2

[
F

(
y + λ−1/2x1 + λ−1/2x2√

2

)
G

(
y + λ−1/2x1 − λ−1/2x2√

2

)]]
.

But by Lemma 3.4, we have that

(3.4)

Tλ

(
(F ∗G)λ

)
(y)

= Ex1

[
Ex2

[
F

(
y√
2

+
x1√
2λ

+
x2√
2λ

)]]

× Ex1

[
Ex2

[
G

(
−

[
−

( y√
2

+
x1√
2λ

)
+

x2√
2λ

])]]

= Ex1

[
T2λ(F )

(
y√
2

+
x1√
2λ

)]
Ex1

[
T2λ(G(− ·))

(
−

( y√
2

+
x1√
2λ

))]

= T2λ

(
T2λ(F )

)( y√
2

)
T2λ

(
T2λ(G(− · ))(− · ))

(
y√
2

)

which concludes the proof of Theorem 3.5. ¤

Remark 3.6. Formula (3.3) is useful in that it permits one to calculate T
(p)
q

(
(F ∗

G)q

)
without actually calculating (F ∗G)q .

4. Conditional transform and conditional convolution

In this section we define the conditional function space integral of F given
X as the conditional expectation E(F |X). We then define the conditional
generalized Feynman integral, the CGFFT T

(p)
q (F |X) and the CCP [(F ∗G)q|X]

on function space Ca,b[0, T ].
Throughout this section we will always condition by the function X :Ca,b[0, T ]

→ Rn

(4.1) X(x) = ((g1, x)∼, . . . , (gn, x)∼),

where {g1, . . . , gn} is an orthonormal set in C ′a,b[0, T ].
In [14], Park and Skoug obtained a simple formula for expressing conditional

Wiener integrals with a vector-valued conditioning function in terms of ordi-
nary Wiener integrals, and then used the formula to derive the Kac-Feynman
integral equation for time dependent potential function. In [15], they defined
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the concepts of a CFFT and a CCP on Wiener space using their simple for-
mula, and studied several relationships between them. In [14, 15] the authors
used the conditioning function X : C0[0, T ] → Rn defined by

(4.2) X(x) = (x(t1), . . . , x(tn)), 0 = t0 < t1 < · · · < tn = T.

We note that the conditioning function X given by equation (4.2) is the
special case of X given by (4.1) with b(t) = t and

gj(t) = [b(tj)− b(tj−1)]−1/2

∫ t

0

χ[tj−1,tj ](s)db(s)

on [0, T ] for j = 1, . . . , n.
Let X be a Rn-valued function on Ca,b[0, T ] whose probability distribution

µX is absolutely continuous with respect to Lebesgue measure on Rn. Let
F : Ca,b[0, T ] → C be µ-integrable. Then the conditional integral of F given
X, denoted by E(F |X)(~η), is a Lebesgue measurable function of ~η, unique up
to null sets in Rn, satisfying the equation∫

X−1(B)

F (x)dµ(x) =
∫

B

E(F |X)(~η)dµX(~η)

for all Borel sets B in Rn.

Definition 4.1. Let F : Ca,b[0, T ] → C satisfy conditions (3.1) and (3.2) and
let X : Ca,b[0, T ] → Rn be given by (4.1). For λ > 0 and ~η ∈ Rn, let

Jλ(~η) = E(F (λ−1/2·)|X(λ−1/2·))(~η)

denote the conditional function space integral of F (λ−1/2·) given X(λ−1/2·). If
for a.e. ~η ∈ Rn, there exists a function J∗λ(~η) analytic in λ on C+ such that
J∗λ(~η) = Jλ(~η) for all λ > 0, then J∗λ(·) is defined to be the conditional analytic
function space integral of F given X with parameter λ and for λ ∈ C+ we write

Eanλ(F |X)(~η) = J∗λ(~η).

If for fixed real q 6= 0, the limit

lim
λ→−iq

Eanλ(F |X)(~η)

exists for a.e. ~η ∈ Rn, where λ → −iq through values in C+, we denote the
value of this limit by Eanfq (F |X)(~η) and we call it the conditional generalized
analytic Feynman integral of F given X with parameter q.

The following theorem is useful to define the CGFFT and the CCP over
Ca,b[0, T ] [5].

Theorem 4.2. Let F ∈ L1(Ca,b[0, T ]) and let X be given by equation (4.1).
Then

E
(
F

∣∣X)
(~η) = E

[
F

(
x−

n∑

j=1

(gj , x)∼gj +
n∑

j=1

ηjgj

)]
.
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In view of Theorem 4.2 we can define the CGFFT and the CCP of functionals
on function space Ca,b[0, T ].

Definition 4.3. For λ ∈ C+ and y ∈ Ca,b[0, T ], let Tλ(F |X)(y, ~η) denote the
conditional analytic function space integral of F (y + ·) given X(·); that is to
say

(4.3)

Tλ(F |X)(y, ~η) = Eanλ(F (y + ·)|X)(~η)

= Eanλ
x

[
F

(
y + x−

n∑

j=1

(gj , x)∼gj +
n∑

j=1

ηjgj

)]
.

Then for p ∈ [1, 2] we define the CGFFT of F given X by the formula (λ ∈ C+),

T (p)
q (F |X)(y, ~η) =

{
l.i.m.λ→−iqTλ(F |X)(y, ~η), 1 < p ≤ 2
limλ→−iq Tλ(F |X)(y, ~η), p = 1

if it exists. Note that in the case p = 1,

T (1)
q (F |X)(y, ~η) = Eanfq

x

[
F

(
y + x−

n∑

j=1

(gj , x)∼gj +
n∑

j=1

ηjgj

)]
.

And we define the CCP [(F ∗G)λ|X](y, ~η) (if it exists) by the formula
(4.4)

[(F ∗G)λ|X](y, ~η)

=

{
Eanλ(F (y+·√

2
)G(y−·√

2
)|X)(~η), λ ∈ C+

Eanfq (F (y+·√
2
)G(y−·√

2
)|X)(~η), λ = −iq, q ∈ R, q 6= 0

=





Eanλ
x

[
F

(
y+x√

2
−

n∑
j=1

(gj ,x)∼√
2

gj +
n∑

j=1

ηj√
2
gj

)

×G
(

y−x√
2

+
n∑

j=1

(gj ,x)∼√
2

gj −
n∑

j=1

ηj√
2
gj

)]
, λ ∈ C+

E
anfq
x

[
F

(
y+x√

2
−

n∑
j=1

(gj ,x)∼√
2

gj +
n∑

j=1

ηj√
2
gj

)

×G
(

y−x√
2

+
n∑

j=1

(gj ,x)∼√
2

gj −
n∑

j=1

ηj√
2
gj

)]
, λ = −iq, q ∈ R, q 6= 0.

Again if λ = −iq, we will denote [(F ∗G)λ|X](y, ~η) by [(F ∗G)q|X](y, ~η).

Lemma 4.4. Let {g1, . . . , gn} be an orthonormal set in C ′a,b[0, T ]. Let Z1, Z2 :
[0, T ]× Ca,b[0, T ]× Ca,b[0, T ] → R be given by

Z1(t;x1, x2) = 2−1/2

(
x1(t)−

n∑

j=1

(gj , x1)∼gj(t) + x2(t)−
n∑

j=1

(gj , x2)∼gj(t)
)

and

Z2(t; x1, x2) = 2−1/2

(
x1(t)−

n∑

j=1

(gj , x1)∼gj(t)− x2(t) +
n∑

j=1

(gj , x2)∼gj(t)
)

.
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Then {Z1 : t ∈ [0, T ]} and {Z2 : t ∈ [0, T ]} are independent processes.

Proof. Using equations (2.1) through (2.5) and direct calculations, we can prove
that for s, t ∈ [0, T ]

Ex1 [Ex2 [Z1(s; x1, x2)Z2(t; x1, x2)]]
= Ex1 [Ex2 [Z1(s; x1, x2)]]Ex1 [Ex2 [Z2(t; x1, x2)]]. ¤

In Theorem 4.5 below, we show that the CGFFT of the CCP is the product
of multiple CGFFTs.

Theorem 4.5. Let X be given by equation (4.1). Let F and G be functionals
on Ca,b[0, T ]. Assume that

T
(p)
2q

(
T

(p)
2q (F |X)( · , ~η2)

∣∣X)
(y, ~η1),

T
(p)
2q

(
T

(p)
2q (G(− · )|X)(− · , ~η2)

∣∣X)
(y, ~η1)

and
T (p)

q

(
[(F ∗G)q|X]( · , ~η1)

∣∣X)
(y, ~η2)

all exist. Then

(4.5)

T (p)
q

(
[(F ∗G)q|X]( · , ~η1)

∣∣X)
(y, ~η2)

= T
(p)
2q

(
T

(p)
2q (F |X)

(
· , ~η2√

2

)∣∣∣∣X
)(

y√
2
,

~η1√
2

)

× T
(p)
2q

(
T

(p)
2q (G(− · )|X)

(
− · ,− ~η2√

2

)∣∣∣∣X
)(

y√
2
,− ~η1√

2

)

for s-a.e. y ∈ Ca,b[0, T ].

Proof. Again, as noted in the proof of Theorem 3.5, we only need to consider
the case where λ > 0. But using equations (4.3) and (4.4), we observe that for
all λ > 0,

Tλ

(
[(F ∗G)λ|X]( · , ~η1)

∣∣X)
(y, ~η2)

= Ex1

[
[(F ∗G)λ|X]

(
y + λ−1/2x1 −

n∑

j=1

(gj , λ
−1/2x1)∼gj +

n∑

j=1

η2jgj , ~η1

)]

= Ex1

[
Ex2

[
F

(
y√
2

+
1√
2λ

[
x1 −

n∑

j=1

(gj , x)∼gj + x2 −
n∑

j=1

(gj , x2)∼gj

]

+
n∑

j=1

η2j + η1j√
2

gj

)

×G

(
y√
2

+
1√
2λ

[
x1 −

n∑

j=1

(gj , x1)∼gj − x2 +
n∑

j=1

(gj , x2)∼gj

]

+
n∑

j=1

η2j − η1j√
2

gj

)]]
.
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By Lemma 4.4 above, 2−1/2
(
x1−

∑n
j=1(gj , x1)∼gj +x2−

∑n
j=1(gj , x2)∼gj

)
and

2−1/2
(
x1−

∑n
j=1(gj , x1)∼gj−x2+

∑n
j=1(gj , x2)∼gj

)
are independent processes.

Hence the expectation FG equals the product of the expectations and so we
see that

Tλ

(
[(F ∗G)λ|X]( · , ~η1)

∣∣X)
(y, ~η2)

= Ex1

[
Ex2

[
F

(
y√
2

+
x1√
2λ

−
n∑

j=1

(gj , x1)∼√
2λ

gj +
n∑

j=1

η1j√
2
gj

+
x2√
2λ

−
n∑

j=1

(gj , x2)∼√
2λ

gj +
n∑

j=1

η2j√
2
gj

)]]

× Ex1

[
Ex2

[
G

(
−

[
−

( y√
2

+
x1√
2λ

−
n∑

j=1

(gj , x1)∼√
2λ

gj +
n∑

j=1

(−η1j)√
2

gj

)

+
x2√
2λ

−
n∑

j=1

(gj , x2)∼√
2λ

gj +
n∑

j=1

(−η2j)√
2

gj

])]]

= Ex1

[
T2λ(F |X)

(
y√
2

+
x1√
2λ

−
n∑

j=1

(gj , x1)∼√
2λ

gj +
n∑

j=1

η1j√
2
gj ,

~η2√
2

)]

× Ex1

[
T2λ(G(− · )|X)

(
−

( y√
2

+
x1√
2λ

−
n∑

j=1

(gj , x1)∼√
2λ

gj +
n∑

j=1

(−η1j)√
2

gj

)
,− ~η2√

2

)]

= T2λ

(
T2λ(F |X)

(
· , ~η2√

2

)∣∣∣∣X
)(

y√
2
,

~η1√
2

)

× T2λ

(
T2λ(G(− · )|X)

(
− · ,− ~η2√

2

)∣∣∣∣X
)(

y√
2
,− ~η1√

2

)

which concludes the proof of Theorem 4.5. ¤
Remark 4.6. Formula (4.5) is useful in that it permits one to calculate the con-
ditional transform of the conditional convolution without actually calculating
conditional convolution.

5. Corollaries

Our results between the GFFT and the CP, and between the CGFFT and
the CCP on function space (namely, equations (3.3) and (4.5)), are different
from the results in [8, 9, 10, 11, 15]. But our results in Sections 3 and 4 are
indeed very general theorems.

In the setting of one parameter Wiener space (C0[0, T ],B(C0[0, T ]), mw) (i.e.,
the case where a(t) ≡ 0 and b(t) = t on [0, T ]), Huffman, Park, and Skoug
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[8, 9, 10, 11, 15] showed that for appropriate functionals F, G : C0[0, T ] → C,

(5.1) T (p)
q

(
(F ∗G)q

)
(y) = T (p)

q (F )(y/
√

2)T (p)
q (G)(y/

√
2)

and

T (p)
q

(
[(F ∗G)q|X]( · , ~η1)

∣∣X)
(y, ~η2)

= T (p)
q (F |X)

(
y√
2
,

~η2 + ~η1√
2

)
T (p)

q (G|X)
(

y√
2
,

~η2 − ~η1√
2

)(5.2)

for s-a.e. y ∈ C0[0, T ], respectively.
In next two corollaries, we assume that T

(p)
q ((F ∗ G)q), T

(p)
q (F ), T

(p)
q (G),

T
(p)
q ([(F ∗G)q|X]( · , ~η1)|X)(·, ~η2), T

(p)
q (F |X)(·, ~η2+ ~η1√

2
), and T

(p)
q (F |X)(·, ~η2− ~η1√

2
)

all exist.

Corollary 5.1. In Theorem 3.5, if a(t) ≡ 0 and b(t) = t, then we have equation
(5.1).

Proof. If a(t) ≡ 0 and b(t) = t, then the processes Y1 and Y2 in Lemma 3.4 are
equivalent to the standard Wiener process. Using this fact, we see that for all
λ > 0

(5.3) T2λ

(
T2λ(F )

)
(y/

√
2) = Tλ(F )(y/

√
2)

and

(5.4) T2λ

(
T2λ(G(−·))(−·))(y/

√
2) = Tλ(G)(y/

√
2).

Using equation (3.4) together with equations (5.3) and (5.4), we have equation
(5.1) above. ¤

By a similar argument, we also have following corollary.

Corollary 5.2. In Theorem 4.5, if a(t) ≡ 0 and b(t) = t, then we have equation
(5.2).

6. Examples

In this section we apply the results obtained in previous sections to various
functionals on function space Ca,b[0, T ].

Formula (3.3) is useful in that it permits one to calculate T
(p)
q

(
(F ∗ G)q

)
without actually calculating (F ∗G)q. In practice,

T
(p)
2q

(
T

(p)
2q (F )

)
and T

(p)
2q

(
T

(p)
2q (G(− · ))(− · ))

are usually easier to calculate than are (F ∗ G)q and T
(p)
q

(
(F ∗ G)q

)
. Also,

formula (4.5) can be explained by same argument.

Example 6.1. We give this example by finding T
(p)
q ((Fj ∗ Fk)q) for various

functionals on function space Ca,b[0, T ]. For simplicity, we restrict our discus-
sion to the case p = 1. In view of equations (3.3) and (4.5), we need only
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compute the transforms and the conditional transforms of the various func-
tionals Fj . The results are summarized below where the expressions for

T
(1)
q

(
T

(1)
q (Fj)

)
, T

(1)
q

(
T

(1)
q (Fj(−·))(−·)

)
, T

(1)
q

(
T

(1)
q (Fj |X)(·, ~η2)

∣∣X)
(·, ~η1),

and

T (1)
q

(
T (1)

q (Fj(−·)|X)(−·, ~η2)
∣∣X)

(·, ~η1)

are valid for all q ∈ R− {0}.

Table 1

Fj(x) T
(1)
q

`
T

(1)
q (Fj)

´
(y) T

(1)
q

`
T

(1)
q (Fj(−·))(−·)

´
(y)

F1(x) = 1 1 1

F2(x) = (w, x)∼ (w, y)∼ (w, y)∼

+2(i/q)1/2(w, a)C′
a,b

F3(x)
R T

0
y(t)db(t)

R T

0
y(t)db(t)

=
R T

0
x(t)db(t) +2(i/q)1/2

R T

0
a(t)db(t)

F4(x) exp
˘
c(w, y)∼ + ic2

q
‖w‖2C′

a,b

¯
exp

˘
c(w, y)∼ + ic2

q
‖w‖2C′

a,b

¯

= exp{c(w, x)∼} × exp
˘
2c(i/q)1/2(w, a)C′

a,b

¯

In Tables 1, 2 and 3, w is any function in C ′a,b[0, T ] and c ∈ C. For all γ ∈ C,
γ1/2 is chosen to have nonnegative real part.

Now, using Tables 1, 2, and 3, together with (3.3) and (4.5), one can imme-
diately compute

T (1)
q

(
(Fj ∗ Fk)q

)
and T (1)

q

(
[(Fj ∗ Fk)q|X]( · , ~η1)

∣∣X)
( · , ~η2)

for j, k ∈ {1, 2, 3, 4}. For example,

T (1)
q

(
(F2 ∗ F4)q

)
(y)

=
[
(w, y)∼ + 2

(
i

2q

)1/2

(w, a)C′a,b

]
exp

{
c(w, y)∼ +

ic2

2q
‖w‖2C′a,b

}
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Table 2

Fj(x) T
(1)
q

`
T

(1)
q (Fj |X)(·, ~η2)

˛̨
X
´
(y, ~η1)

F1(x) = 1 1

F2(x) = (w, x)∼ (w, y)∼ +
nP

j=1

(η2j + η1j)(w, gj)C′
a,b

+ 2(i/q)1/2(w, a)C′
a,b

−2(i/q)1/2
nP

j=1

(w, gj)C′
a,b

(w, a)C′
a,b

F3(x) =
R T

0
x(t)db(t)

R T

0
y(t)db(t) +

nP
j=1

(η2j + η1j)
R T

0
gj(t)db(t)

+2(i/q)1/2
R T

0
a(t)db(t)

−2(i/q)1/2
nP

j=1

(a, gj)C′
a,b

R T

0
gj(t)db(t)

F4(x) = exp{c(w, x)∼} exp
˘
c(w, y)∼ + c

nP
j=1

(η2j + η1j)(w, gj)C′
a,b

× exp
˘

ic2

q
‖w‖2C′

a,b
− ic2

q

nP
j=1

(w, gj)
2
C′

a,b

¯

× exp
˘
2c(i/q)1/2(w, a)C′

a,b

¯

× exp
˘− 2c(i/q)1/2

nP
j=1

(w, gj)C′
a,b

(gj , a)C′
a,b

¯

and

T (1)
q

(
[(F2 ∗ F4)q|X]( · , ~η1)

∣∣X)
(y, ~η2)

=
[
(w, y)∼ +

n∑

j=1

η2j + η1j√
2

(w, gj)C′a,b

− 2
(

i

2q

)1/2 n∑

j=1

(w, gj)C′a,b
(w, a)C′a,b

+ 2
(

i

2q

)1/2

(w, a)C′a,b

]

× exp
{

c(w, y)∼ + c

n∑

j=1

η2j − η1j√
2

(w, gj)C′a,b
+

ic2

2q
‖w‖2C′a,b

− ic2

2q

n∑

j=1

(w, gj)2C′a,b

}
.

We finish this paper by mentioning that the hypotheses (and hence con-
clusions) of Theorems 3.5 and 4.5 above are indeed satisfied by several large
classes of functionals; we shall very briefly discuss two such classes.
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Table 3

Fj(x) T
(1)
q

(
T

(1)
q (F2(−·)|X)(−·, ~η2)

)
(y, ~η1)

F1(x) = 1 1

F2(x) = (w, x)∼ (w, y)∼ −
n∑

j=1

(η2j − η1j)(w, gj)C′a,b

F3(x) =
∫ T

0
x(t)db(t)

∫ T

0
y(t)db(t)−

n∑
j=1

(η2j − η1j)
∫ T

0
gj(t)db(t)

F4(x) = exp{c(w, x)∼} exp
{
c(w, y)∼ − c

n∑
j=1

(η2j − η1j)(w, gj)C′a,b

}

× exp
{

ic2

q ‖w‖2C′a,b
− ic2

q

n∑
j=1

(w, gj)2C′a,b

}

Example 6.2. The Banach algebra S(L2
a,b[0, T ]), introduced by Chang and

Skoug in [7], consists of functionals expressible in the form

(6.1) F (x) =
∫

L2
a,b[0,T ]

exp
{
i〈u, x〉}df(u)

for s-a.e. x ∈ Ca,b[0, T ], where the associated measure f is an element of
M(L2

a,b[0, T ]), the space of C-valued countably additive Borel measures on
L2

a,b[0, T ]. Since the map Dt : C ′a,b[0, T ] → L2
a,b[0, T ] given by equation (2.2) is

an isomorphism, expression (6.1) can be rewritten by

F (x) =
∫

L2
a,b[0,T ]

exp
{
i(D−1

t u, x)∼}df(u)

for s-a.e. x ∈ Ca,b[0, T ]. Now for fixed q ∈ R, let L(q) be the class of functionals
F ∈ S(L2

a,b[0, T ]) satisfying the condition

(6.2)
∫

L2
a,b[0,T ]

exp
{

5(n + 1)√
|4q| ‖D

−1
t u‖C′a,b

‖a‖C′a,b

}
|df(u)| < +∞.

For example for F ∈ L(q), a direct calculation show that for all p ∈ [1, 2]

T
(p)
2q (F |X)(y, ~η)

=
∫

L2
a,b[0,T ]

exp
{

i〈u, y〉+ i

n∑

j=1

(D−1
t u, gj)C′a,b

ηj
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− i

4q

[
‖D−1

t u‖2C′a,b
−

n∑

j=1

(D−1
t u, gj)2C′a,b

]

+ i(−2iq)−1/2

[
(D−1

t u, a)C′a,b
−

n∑

j=1

(D−1
t u, gj)C′a,b

(D−1
t u, a)C′a,b

]}
df(u)

for s-a.e. y ∈ Ca,b[0, T ]. Thus for s-a.e. y ∈ Ca,b[0, T ], we easily obtain that

∣∣T (p)
2q (F |X)(y, ~η)

∣∣≤
∫

L2
a,b[0,T ]

exp
{

5(n + 1)√
|4q| ‖D

−1
t u‖C′a,b

‖a‖C′a,b

}
|df(u)| < +∞.

By carrying out the same calculations and using condition (6.2), we easily see
that for F and G in L(q)

T (p)
q (F )(y), T (p)

q (F (− · ))(y), T (p)
q (T (p)

q (F ))(y), T (p)
q (T (p)

q (F (− · ))(− · ))(y),

T (p)
q (F |X)(y, ~η), T (p)

q (F (− · )|X)(y, ~η)

T (p)
q

(
T (p)

q (F |X)( · , ~η2)
∣∣X)

(y, ~η1),

and

T (p)
q

(
T (p)

q (F (− · )|X)(− · , ~η2)
∣∣X)

(y, ~η1)

all exist. Thus Theorems 3.5 and 4.5 hold for all F and G in L(q).

Example 6.3. In [3], Chang, Choi, and Skoug obtained various integration by
parts formulas involving generalized analytic Feynman integrals, L1 GFFTs,
and L2 GFFTs for functionals of the form

(6.3) F (x) = f(〈α1, x〉, . . . , 〈αm, x〉)
for s-a.e. x ∈ Ca,b[0, T ], where {α1, . . . , αm} is an orthonormal set of functions
in L2

a,b[0, T ]. Proceeding formally we see that

T (2)
q (F )(y) =

( m∏

k=1

−iq

2πσ2
k

)1/2 ∫

Rm

f(~u + 〈~α, y〉)

× exp
{
−

m∑

k=1

(
(−iq)1/2uk −mk

)2

2σ2
k

}
d~u,

where mk =
∫ T

0
αk(t)da(t), σ2

k =
∫ T

0
α2

k(t)db(t) for k = 1, . . . , m, and 〈~α, y〉 =
(〈α1, y〉, . . . , 〈αm, y〉). Thus, putting appropriate continuity and integrability
conditions on f : Rm → C and various orthogonality between {D−1

t α1, . . . ,
D−1

t αm} and {g1, . . . , gn} in C ′a,b[0, T ], one can show that Theorems 3.5 and
4.5 above hold for various functionals of the form (6.3).
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