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CONVOLUTION THEOREMS FOR FRACTIONAL FOURIER

COSINE AND SINE TRANSFORMS AND THEIR

EXTENSIONS TO BOEHMIANS

Chinnaraman Ganesan and Rajakumar Roopkumar

Abstract. By introducing two fractional convolutions, we obtain the
convolution theorems for fractional Fourier cosine and sine transforms.
Applying these convolutions, we construct two Boehmian spaces and then
we extend the fractional Fourier cosine and sine transforms from these
Boehmian spaces into another Boehmian space with desired properties.

1. Introduction

Let N, R, and C denote the sets of all natural, real and complex numbers
respectively. The Banach space of all Lebesgue measurable complex valued

functions f on [0,∞) satisfying ‖f‖p =
(∫

∞

0 |f(t)|p dt
)

1

p < ∞, is denoted by
Lp
+, where p = 1, 2. After the introduction of fractional Fourier transform [11],

many integral transforms have been generalized as the corresponding fractional
integral transforms. In particular, fractional Fourier cosine transform (frfct),
fractional Fourier sine transform (frfst) and Fractional Hartley transform
were defined and used extensively in signal processing. See [2, 16]. We now
recall the definitions of frfct and frfst of f ∈ L1

+ from [2].

(Fα
C (f))(u) = cα

√

2

π

∫

∞

0

f(x)eiaα(x2+u2) cos(bαux)dx, u ∈ [0,∞),

(Fα
S (f))(u) = cα

√

2

π

∫

∞

0

f(x)eiaα(x2+u2) sin(bαux)dx, u ∈ [0,∞),

where aα = cotα
2 , bα = 1

sinα and cα = eiα/2

√

i sinα
.

Analogous to the Plancherel theorem for Fourier transform [22, p. 186], we
can define the fractional Fourier cosine (sine) transform of f ∈ L2

+ by L2-
limn→∞

Fα
C (fn) (L

2-limn→∞
Fα
S (fn)), where (fn) is a sequence from L1

+ ∩L2
+,

such that fn → f in L2
+ as n → ∞. The existence of (fn) is possible by the
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fact that L1
+ ∩L2

+ is dense in L2
+ and the existence of L2-limn→∞

Fα
C (fn) (L

2-
limn→∞

Fα
S (fn)) follows from the identity ‖f‖2 = ‖Fα

Cf‖2 (‖f‖2 = ‖Fα
S f‖2),

∀f ∈ L1
+ ∩L2

+. We refer the reader to [2, Eqn. (19)], for the Parseval’s identity
for frfct and frfst, which implies the above identities. Thus fractional
Fourier cosine and sine transforms become isometries from L2

+ onto itself with
self inverse.

The convolution theorems for Fourier sine and cosine transforms were first
studied in [23] and then they are generalized by various researchers in [4, 24,
25, 26, 27]. Motivated by the convolutions discussed in [23, 28], we introduce
two convolutions, denoted by ∗αc and ∗αsc, which are suitable for discussing
the convolution theorems for the fractional Fourier cosine and sine transforms.
Using these convolutions, we construct suitable Boehmian spaces Bα

C and Bα
S ,

which are properly larger than L2
+. Further, we extend the frfct and frfst to

these Boehmian spaces and we also prove that the extended fractional Fourier
cosine and sine transforms are well-defined, consistent with classical frfct
and frfst, linear, one-to-one and continuous. Thus, this work generalizes the
convolution theorems for Fourier cosine and sine transforms in [23], extends
the frfct and frfst in [2] to the context of Boehmians, and also generalizes
the Fourier cosine and sine transforms on Boehmians in [21, Section 3].

The concept of Boehmian space was first introduced by J. Mikusiński and
P. Mikusiński [5], which is, in general, a generalization of the space of distribu-
tions. This generalization motivates many researchers to extend the theory of
integral transforms to the context of Boehmians (see [1, 3, 7, 9, 10, 12, 13, 14,
15, 17, 18, 19, 20, 21, 28, 29]).

Before ending this section, we briefly recall the construction of Boehmians
from [6, 8]. An abstract Boehmian space is, in general, denoted by B =
B(G, (S, ·),⊙,∆), where G is a topological vector space over C, (S, ·) is a
commutative semi-group, ⊙ : G× S → G satisfies the following conditions:

• (g1 + g2)⊙ s = g1 ⊙ s+ g2 ⊙ s, ∀g1, g2 ∈ G and ∀s ∈ S.
• (cg)⊙ s = c(g ⊙ s), ∀c ∈ C, ∀g ∈ G and ∀s ∈ S.
• g ⊙ (s · t) = (g ⊙ s)⊙ t, ∀g ∈ G and ∀s, t ∈ S.
• If gn → g as n→ ∞ in G and s ∈ S, then gn ⊙ s→ g ⊙ s as n→ ∞,

and ∆ is a collection of sequences from S with the following properties:

• If (sn), (tn) ∈ ∆, then (sn · tn) ∈ ∆.
• If gn → g as n → ∞ in G and (sn) ∈ ∆, then gn ⊙ sn → g as n → ∞
in G.

If gn ∈ G, ∀n ∈ N and (sn) ∈ ∆ are such that gn ⊙ sm = gm ⊙ sn, ∀m,n ∈ N,
then the pair of sequences ((gn), (sn)) is called a quotient and is denoted by gn

sn
.

The equivalence class
[

gn
sn

]

containing gn
sn

induced by the equivalence relation

∼, which is defined on the collection of all quotients by

gn
sn

∼ hn
tn

if gn ⊙ tm = hm ⊙ sn, ∀m,n ∈ N
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is called a Boehmian and the collection B of all Boehmians is a vector space
with respect to the following addition and scalar multiplication:

[

gn
sn

]

+

[

hn
tn

]

=

[

gn ⊙ tn + hn ⊙ sn
sn · tn

]

, c

[

gn
sn

]

=

[

cgn
sn

]

.

Every member g ∈ G can be uniquely identified as a member of B by
[

g⊙sn
sn

]

,

where (sn) ∈ ∆ is arbitrary and the operation ⊙ is also extended to B × S

by
[

gn
sn

]

⊙ t =
[

gn⊙t
sn

]

. There are two notions of convergence on B namely

δ-convergence and ∆-convergence, which are defined as follows.

Definition ([6]). We write that Xm
δ→ X as m → ∞ in B, if there exist

gm,n, gn ∈ G, m,n ∈ N and (sn) ∈ ∆ such that Xm =
[

gm,n

sn

]

, X =
[

gn
sn

]

and

for each n ∈ N, gm,n → gn as m→ ∞ in G.

Definition ([6]). We write that Xm
∆→ X as m → ∞ in B, if there exists

(sn) ∈ ∆ such that (Xm −X)⊙ sm ∈ G ∀m ∈ N and (Xm −X)⊙ sm → 0 as
m→ ∞ in G. This means that there exist gm ∈ G, ∀m ∈ N and (sn) ∈ ∆ such

that (Xm −X)⊙ sm =
[

gm⊙sn
sn

]

and gm → 0 as m→ ∞ in G.

2. Convolution for fractional Fourier cosine and sine transforms

In this section, we introduce two special convolutions and prove all the pre-
liminary results required for constructing the Boehmian spaces Bα

C and Bα
S .

Definition. For f, g ∈ L1
+ and x ∈ [0,∞),

(i) The convolution ∗αc is defined by

(f ∗αc g)(x) = cα
√

2π

∫

∞

0 g(y)eβy
2

[f(x+ y)eβxy + f(|x− y|)e−βxy]dy.

(ii) The convolution ∗αsc is defined by

(f ∗αsc g)(x) = cα
√

2π

∫

∞

0
f(y)eβy

2

[g(|x− y|)e−βxy − g(x+ y)eβxy]dy,

where β = 2iaα.

It is easy to verify the following two inequalities:

‖f ∗αc g‖1 ≤ cα

√

2

π
‖f‖1‖g‖1 and ‖f ∗αsc g‖1 ≤ cα

√

2

π
‖f‖1‖g‖1.

Lemma 2.1. If f, g ∈ L1
+, then f ∗αc g = g ∗αc f.

Proof. Let f, g ∈ L1
+ and let x ∈ [0,∞). If β = 2iaα, then

√
2π

cα
(f ∗αc g)(x)

=

∫

∞

0

g(y)eβy
2

[f(x+ y)eβxy + f(|x− y|)e−βxy]dy
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=

∫

∞

0

g(y)f(x+ y)eβ(y
2+xy) dy +

∫

∞

0

g(y)f(|x− y|)eβ(y2
−xy)dy

=

∫

∞

x

g(z − x)f(z)eβ[(z−x)2+x(z−x)] dz

+

∫ x

−∞

g(x− z)f(|z|)eβ[(x−z)2−x(x−z)]dz

=

∫

∞

x

g(z − x)f(z)eβ[z
2
−zx] dz +

∫

∞

0

g(x+ z)f(z)eβ[z
2+zx]dz

+

∫ x

0

g(x− z)f(z)eβ[z
2
−zx]dz

=

∫

∞

0

f(z)eβz
2

[g(|z − x|)e−βzx + g(x+ z)eβzx]dz =

√
2π

cα
(g ∗αc f)(x)

and hence f ∗αc g = g ∗αc f. �

Lemma 2.2. If f, g and h ∈ L1
+, then f ∗αc (g ∗αc h) = (f ∗αc g) ∗αc h.

Proof. For x ∈ [0,∞),

[(f ∗αc g) ∗αc h](x)

(1)

=

∫

∞

0

[(f ∗αc g)(x+ z)eβxz + (f ∗αc g)(|x− z|)e−βxz]h(z)eβz
2

dz

=

∫

∞

0

h(z)eβ(z
2+xz)(f ∗αc g)(x+ z)dz +

∫

∞

0

h(z)eβ(z
2
−xz)(f ∗αc g)(|x − z|)dz

=

∫

∞

0

h(z)eβ(z
2+xz)I(x, z)dz +

∫

∞

0

h(z)eβ(z
2
−xz)J(x, z)dz,

where

I(x, z) =

∫

∞

0

g(u)eβu
2

[f(x+ z + u)eβ(x+z)u + f(|x+ z − u|)e−β(x+z)udu;

J(x, z) =

∫

∞

0

g(u)eβu
2

[f(|x− z|+ u)eβ|x−z|u + f(||x− z| − u|)e−β|x−z|udu.

Since
∫

∞

0

h(z)eβ(z
2
−xz)J(x, z)dz

=

∫

∞

0

h(z)eβ(z
2
−xz)

∫

∞

0

g(u)eβu
2

[f(|x− z + u|)eβ(x−z)u

+ f(|x− z − u|)e−β(x−z)udu dz,

the equation (1) becomes

[(f ∗αc g) ∗αc h](x)
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=

∫

∞

0

h(z)eβ(z
2+xz)

∫

∞

0

g(u)eβu
2

[f(x+ z + u)eβ(x+z)u

+ f(|x+ z − u|)e−β(x+z)udu dz

+

∫

∞

0

h(z)eβ(z
2
−xz)

∫

∞

0

g(u)eβu
2

[f(|x− z + u|)eβ(x−z)u

+ f(|x− z − u|)e−β(x−z)udu dz

=

∫

∞

0

h(z)eβz
2

{

e−βxz

∫

∞

z

f(|x+ u− z|)g(u)eβ(u2+xu−uz)du

+

[

eβxz
(
∫ z

0

f(|x+ z − u|)g(u)eβ(u2
−xu−uz)du

+

∫

∞

0

f(x+ u+ z)g(u)eβ(u
2+xu+uz)du

)]

+ eβxz
∫

∞

z

f(|x+ z − u|)g(u)eβ(u2
−xu−uz)du

+

[

e−βxz

(
∫

∞

0

f(|x− u− z|)g(u)eβ(u2+uz−xu)du

+

∫ z

0

f(|x+ u− z|)g(u)eβ(u2+xu−uz)du

)]}

=

∫

∞

0

eβy
2

[f(x+ y)eβxy + f(|x− y|)e−βxy]

∫

∞

0

h(z)eβz
2

[g(y + z)eβyz

+ g(|y − z|)e−βyz]dz dy

= [f ∗αc (g ∗αc h)](x).
Since x ∈ [0,∞) is arbitrary, the proof follows. �

In the following sequel, the well known inequality (a + b)2 ≤ 2(a2 + b2),
∀a, b ≥ 0, will be used at many places, without quoting it, explicitly.

Lemma 2.3. If f ∈ L2
+ and g ∈ L1

+, then ‖f ∗αc g‖2 ≤ |cα|
√

2
π‖f‖2 ‖g‖1, and

hence f ∗αc g ∈ L2
+.

Proof. By using Jensen’s inequality and Fubini’s theorem, we obtain that

‖f ∗αc g‖22 =
∫

∞

0

|(f ∗αc g)(x)|2 dx

=

∫

∞

0

∣

∣

∣

∣

cα√
2π

∫

∞

0

g(y)eβy
2

[f(x+ y)eβxy + f(|x− y|)e−βxy]dy

∣

∣

∣

∣

2

dx

≤ ‖g‖21|cα|2
2π

∫

∞

0

(
∫

∞

0

|g(y)||f(x+y)eβxy+f(|x−y|)e−βxy|2 dy

‖g‖1

)

dx

≤ ‖g‖1|cα|2
π

∫

∞

0

|g(y)|
(
∫

∞

0

(|f(x + y)|2 + |f(|x− y|)|2)dx
)

dy,
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(using the convexity of ζ 7→ ζ2 on [0,∞))

≤ ‖g‖1|cα|2
π

∫

∞

0

|g(y)|
(
∫

∞

y

|f(z)|2dz +
∫

∞

−y

|f(|z|)|2dz
)

dy

≤ 2‖g‖1|cα|2
π

∫

∞

0

|g(y)| ‖f‖22 dy ≤ 2|cα|2
π

‖g‖21 ‖f‖22.

Thus ‖f ∗αc g‖2 ≤ |cα|
√

2
π‖g‖1 ‖f‖2, which completes the proof. �

The following theorem is an immediate consequence of the inequality proved
in the previous theorem.

Theorem 2.4. If fn → f as n→ ∞ in L2
+ and g ∈ L1

+, then fn ∗αc g → f ∗αc g
as n→ ∞ in L2

+.

Lemma 2.5. If f ∈ L2
+ and if g, h ∈ L1

+, then f ∗αc (g ∗αc h) = (f ∗αc g) ∗αc h.

Proof. Choose a sequence fn ∈ L1
+ ∩ L2

+ such that fn → f as n → ∞ in L2
+.

By using Lemma 2.2 and Theorem 2.4, we obtain that

f ∗αc (g ∗αc h) = L2- lim fn ∗αc (g ∗αc h) = L2- lim(fn ∗αc g) ∗αc h = (f ∗αc g) ∗αc h.
Hence the theorem follows. �

Theorem 2.6 (Convolution theorems). If f, g ∈ L1
+ and u ∈ [0,∞), then

(i) [Fα
C (f ∗αc g)](u) = e−iaαu2

[Fα
C (f)](u)[FC(g)](u).

(ii) [Fα
S (f ∗αsc g)](u) = e−iaαu2

[Fα
S (f)](u)[F

α
C (g)](u).

Proof. For f, g ∈ L1
+ and u ∈ [0,∞),

(i)

[Fα
C (f ∗αc g)](u)

= cα

√

2

π

∫

∞

0

(f ∗αc g)(x)eiaα(x2+u2) cos(bαux)dx

=
c2α
π

∫

∞

0

g(y)eiaα(2y2+u2){
∫

∞

0

[f(x+ y)eiaα(x2+2xy)

+ f(|x− y|)eiaα(x2
−2xy)] cos(bαux)dx}dy

=
c2α
π

∫

∞

0

g(y)eiaα(u2+y2){
∫

∞

0

[f(x+ y)eiaα(x+y)2

+ f(|x− y|)eiaα(x−y)2 ] cos(bαux)dx}dy

=
c2α
π

∫

∞

0

g(y)eiaα(u2+y2){
∫

∞

y

f(z)eiaαz2

cos(bαu(z − y))dz

+

∫

∞

−y

f(|z|)eiaαz2

cos(bαu(z + y))dz}dy
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=
c2α
π

∫

∞

0

g(y)eiaα(u2+y2){
∫

∞

0

f(z)eiaαz2

cos(bαu(z − y))dz

+

∫

∞

0

f(z)eiaαz2

cos(bαu(z + y))dz}dy

= cα

√

2

π

∫

∞

0

g(y)eiaα(u2+y2)

∫

∞

0

f(z)eiaαz
2

cos(bαuz) cos(bαuy)dzdy

= e−iaαu2

[Fα
C (f)](u) · [Fα

C (g)](u).

(ii)

[Fα
S (f ∗αsc g)](u)

= cα

√

2

π

∫

∞

0

(f ∗αsc g)(x)eiaα(x2+u2) sin(bαux)dx

=
c2α
2

2

π

∫

∞

0

f(y)eiaα(u2+2y2){
∫

∞

0

[g(|x− y|)eiaα(x2
−2xy)

− g(x+ y)eiaα(x2+2xy)] sin(bαux)dx}dy

=
c2α
2

2

π

∫

∞

0

f(y)eiaα(u2+y2){
∫

∞

0

[g(|x− y|)eiaα(x−y)2

− g(x+ y)eiaα(x+y)2 ] sin(bαux)dx}dy

=
c2α
2

2

π

∫

∞

0

f(y)eiaα(u2+y2){
∫

∞

−y

g(|z|)eiaαz2

sin(bαu(z + y))dz

−
∫

∞

y

g(z)eiaαz2

sin(bαu(z − y))dz}dy

=
c2α
2

2

π

∫

∞

0

f(y)eiaα(u2+y2){
∫

∞

0

g(z)eiaαz2

sin(bα(uz + uy))dz

−
∫

∞

0

g(z)eiaαz2

sin(bα(uz − uy))dz}dy

= c2α
2

π

∫

∞

0

f(y)eiaαy2

sin(bαuy)

∫

∞

0

g(z)eiaα(z
2+u2) cos(bαuz)dzdy

= e−iaαu2

[Fα
S (f)](u)[Fα

C (g)](u).

Hence the theorem follows. �

Theorem 2.7 (Convolution theorems on L2
+). If f ∈ L2

+, g ∈ L1
+ and u ∈

[0,∞), then

(i) [Fα
C (f ∗αc g)](u) = e−iaαu2

[Fα
C (f)](u)[FC(g)](u).

(ii) [Fα
S (f ∗αsc g)](u) = e−iaαu2

[Fα
S (f)](u)[F

α
C (g)](u).

Proof. Using Theorem 2.6, this proof follows from the facts that both frfct

and frfst are continuous from L2
+ onto L2

+ and L1
+ ∩ L2

+ is dense in L2
+. �
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Definition. A sequence (φn) in L2
+ is called a δ-sequence if it satisfies the

following conditions:

(∆1) cα

√

2
π

∫

∞

0 eiaαy2

φn(y) dy = 1, ∀n ∈ N.

(∆2)
∫

∞

0 |φn(y)| dy ≤M , ∀n ∈ N, for some M > 0.
(∆3) Given ǫ > 0, there exists N ∈ N such that support of φn ⊆ (0, ǫ),

∀n ≥ N .

The collection of all δ-sequences is denoted by ∆(α).

Lemma 2.8. If (δn), (ψn) ∈ ∆(α), then (δn ∗αc ψn) ∈ ∆(α).

Proof. Let (δn), (ψn) ∈ ∆(α). By a routine calculation, we obtain that

∫

∞

0

eiaαy2

[δn ∗αc ψn](y) dy = cα

√

2

π

∫

∞

0

δn(u)e
iaαu2

du

∫

∞

0

ψn(u)e
iaαu2

du,

which implies that cα

√

2
π

∫

∞

0 eiaαy2

[δn ∗αc ψn](y) dy = 1, using the property

(∆1) of ∆(α). It is easy to very that ‖δn ∗αc ψn‖1 ≤ cα

√

2
π‖δn‖1‖ψn‖1 < P ,

∀n ∈ N and for some P > 0. For a given ǫ > 0, we choose N ∈ N such that
supp δn, supp ψn ⊂ [0, ǫ

2 ) for all n ≥ N. Using the fact that supp (δn ∗αc ψn) ⊂
[supp δn + supp ψn] ∪ {[0,∞) ∩ [ supp δn − supp ψn]} ∪ {[0,∞) ∩ [supp ψn −
supp δn]}, we get that supp (δn ∗αc ψn) ⊂ [0, ǫ2 ) + [0, ǫ2 ) = [0, ǫ) for all n ≥ N.
Hence it follows that (δn ∗αc ψn) ∈ ∆(α). �

Lemma 2.9. If f ∈ L2
+ and (φn) ∈ ∆(α), then f ∗c φn → f as n→ ∞ in L2

+.

Proof. Let ǫ > 0 be given. Since Cc([0,∞)) is dense in L2
+, we can find g ∈

Cc([0,∞)) such that ‖g − f‖2 < ǫ. If gy(x) = g(|x− y|), ∀x ∈ [0,∞), then the
mapping y 7→ gy is continuous on [0,∞) and hence for 0 < δ < min{1, ǫ2}, we
have ‖gy − g0‖2 < ǫ, ∀y ∈ [0, δ). Therefore, for each y ∈ (0, δ), we have

(2)

∫

∞

0

|g(x+ y)− g(x)|2dx < ǫ2.

Indeed,
∫

∞

0

|g(x+ y)− g(x)|2dx =

∫

∞

y

|g(z)− g(z − y)|2dz

≤
∫ y

0

|g(z)− g(y − z)|2dz +
∫

∞

0

|g(z)− g(z − y)|2dz

=

∫

∞

0

|g(z)− g(|z − y|)|2dz = ‖gy − g0‖22 < ǫ2.

We choose N ∈ N such that suppφn ⊂ [0, δ)∀n ≥ N . Applying Jensen’s
inequality and Fubini’s theorem, for n ≥ N , we get that

‖(g ∗αc φn)− g‖22
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=

∫

∞

0

∣

∣

∣

∣

cα√
2π

∫

∞

0

φn(y)e
βy2

[g(x+ y)eβxy + g(|x− y|)e−βxy]

−2g(x)eiaαy2

φn(y) dy
∣

∣

∣

2

dx

≤
∫

∞

0

|c2α|
2π

(
∫

∞

0

∣

∣

∣
g(x+ y)eiaα(2xy+y2) + g(|x− y|)e−iaα(2xy−y2)

−2g(x)| |φn(y)| dy )
2
dx

≤ |c2α|‖φn‖1
2π

∫

∞

0

|φn(y)|
∫

∞

0

|g(x+ y)eiaα(2xy+y2) − g(x)

+ g(|x− y|)e−iaα(2xy−y2) − g(x)|2 dx dy.(3)

Now for 0 ≤ y < δ, we have
∫

∞

0

|g(x+ y)eiaα(2xy+y2) − g(x)|2 dx

< 2ǫ2 + 2

∫

∞

0

|g(x)| |eiaα(2xy+y2) − 1|2 dx, (using (2))

≤ 2ǫ2 + 2

∫

∞

0

|g(x)| (|aα|(2xy + y2))2 dx

< ǫ2C1, since y2 < y < δ < ǫ2,

where C1 = 1+ 2|aα|2
∫

∞

0 (2x+ δ)2|g(x)| dx <∞. Similarly, we can prove that
∫

∞

0

|g(|x− y|)e−βxy − g(x)|2 dx < ǫ2C2 for some 0 < C2 <∞.

Using these estimates in (3), we get that

(4) ‖(g ∗αc φn)− g‖22 <
1

π
M2|cα|2ǫ2(C1 + C2),

where M > 0 is such that
∫

∞

0
|φn(x)| dx ≤ M, ∀n ∈ N. Thus, using (4),

Lemma 2.3 and property (∆2) of (φn), we have

‖f ∗αc φn − f‖2 ≤ ‖f ∗αc φn − g ∗αc φn‖2 + ‖g ∗αc φn − g‖2 + ‖g − f‖2 < Kǫ

for some K > 0. Hence the lemma follows. �

Theorem 2.10. If fn → f as n→ ∞ in L2
+ and (δn) ∈ ∆(α), then fn ∗αc δn →

f as n→ ∞ in L2
+.

Proof. Let fn, f ∈ L2
+ be such that fn → f as n → ∞ in L2

+ and let (δn) ∈
∆(α). Using Lemma 2.9 and the property (∆2) of (δn), we get that

‖fn ∗αc δn − f‖2 = ‖fn ∗αc δn − f ∗αc δn + f ∗αc δn − f‖2

≤M |cα|
√

2

π
‖fn − f‖2 + ‖f ∗αc δn − f‖2 → 0

as n→ ∞. �
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Thus, we have proved all auxiliary results required to construct the Boehmian
space Bα

C = Bα
C(L

2
+, (L

1
+, ∗αc ), ∗αc ,∆(α)). We shall denote a typical element of

Bα
C by X = [(fn), (δn)].
In the following sequel, we obtain some lemmas which are required to con-

struct the Boehmian space Bα
S = Bα

S (L
2
+, (L

1
+, ∗αc ), ∗αsc,∆(α)).

Lemma 2.11. If f, g and h ∈ L1
+, then (f ∗αsc g) ∗αsc h = f ∗αsc (g ∗αc h).

Proof. For arbitrary x ∈ [0,∞),

2π

c2α
[f ∗αsc (g ∗αc h)](x)

=

∫

∞

0

f(y)eβ(y
2
−xy){

∫

∞

0

g(z)eβz
2

[h(|x− y|+ z)eβ|x−y|z

+ h(||x− y| − z|)e−β|x−y|z]dz}dy

−
∫

∞

0

f(y)eβ(y
2+xy){

∫

∞

0

g(z)eβz
2

[h(x+ y + z)eβ(x+y)z

+ h(|x+ y − z|)e−β(x+y)z]dz}dy

=

∫ x

0

f(y)eβ(y
2
−xy){

∫

∞

0

g(z)eβz
2

[h(|x− y + z|)eβ(x−y)z

+ h(|x− y − z|)e−β(x−y)z]dz}dy

+

∫

∞

x

f(y)eβ(y
2
−xy){

∫

∞

0

g(z)eβz
2

[h(|x − y − z|)eβ(y−x)z

+ h(|x− y + z|)e−β(y−x)z]dz}dy

−
∫

∞

0

f(y)eβ(y
2+xy){

∫

∞

0

g(z)eβz
2

[h(x+ y + z)eβ(x+y)z

+ h(|x+ y − z|)e−β(x+y)z]dz}dy

=

∫

∞

0

f(y)eβ(y
2
−xy){

∫

∞

0

g(z)eβz
2

h(|x− y + z|)eβ(x−y)zdz

+

∫

∞

0

g(z)eβz
2

h(|x− y − z|)e−β(x−y)zdz}dy

−
∫

∞

0

f(y)eβ(y
2+xy){

∫

∞

0

g(z)eβz
2

h(x+ y + z)eβ(x+y)zdz

+

∫

∞

0

g(z)eβz
2

h(|x+ y − z|)e−β(x+y)zdz}dy

=

∫

∞

0

f(y)eβy
2{
∫

∞

0

g(u+ y)eβu(u+y)eβxuh(x+ u)du

+

∫

∞

0

g(|u− y|)eβu(u−y)e−βxuh(|x − u|)du}
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−
∫

∞

0

f(y)eβy
2{
∫

∞

0

g(|y − u|)eβu(u−y)eβuxh(x+ u)du

+

∫

∞

0

g(u+ y)eβu(u+y)e−βuxh(|x − u|)du}dy

=

∫

∞

0

f(y)eβy
2

∫

∞

0

eβu
2{g(|u− y|)e−βuy − g(u+ y)eβuy}

× {h(|x− u|)e−βux − h(x+ u)eβxu}du dy

=

∫

∞

0

(
∫

∞

0

f(y)eβy
2{g(|u− y|)e−βuy − g(u+ y)eβuy}dy

)

× eβu
2{h(|x− u|)e−βux − h(x+ u)eβxu}du

=
2π

c2α
[(f ∗αsc g) ∗αsc h](x).

Hence the theorem follows. �

Remark 2.12. For f ∈ L2
+, g ∈ L1

+ and x ∈ [0,∞), we have (f ∗αsc g)(x) =

(f ∗αc g)(x)− cα

√

2
π

∫

∞

x
f(u− x)g(u)eβ(u−x)udu.

Lemma 2.13. For f ∈ L2
+ and g ∈ L1

+, ‖f ∗αsc g‖2 ≤ 2|cα|
√

2
π‖f‖2 ‖g‖1.

Proof. By previous remark, we have

‖f ∗αsc g‖2 ≤ ‖f ∗αc g‖2 + |cα|
√

2

π

(

∫

∞

0

∣

∣

∣

∣

∫

∞

x

f(u− x)g(u)eβ(u−x)udu

∣

∣

∣

∣

2

dx

)
1

2

.

Using Jensen’s inequality and Fubini’s theorem, we obtain that
∫

∞

0

|
∫

∞

x

f(u− x)g(u)eβ(u−x)udu|2dx

≤
∫

∞

0

(
∫

∞

x

|f(u− x)g(u)|du
)2

dx ≤ ‖g‖1
∫

∞

0

∫

∞

x

f(u− x)|2|g(u)|dudx

≤ ‖g‖1
∫

∞

0

|g(u)|
∫ u

0

|f(u− x)|2dx du ≤ ‖g‖21‖f‖22.

Therefore, using Lemma 2.3 and the above estimate, we obtain that ‖f∗αscg‖2 ≤
2|cα|

√

2
π‖f‖2 ‖g‖1, and hence f ∗αsc g ∈ L2

+. �

Lemma 2.14. If f ∈ Cc([0,∞)) and (δn) ∈ ∆(α), then f ∗αsc δn → f as n→ ∞
in L2

+.

Proof. In view of Remark 2.12 and Lemma 2.9, we have

f ∗αsc δn = (f ∗αc δn − f) + cα

√

2

π

∫

∞

x

f(u− x)δn(u)e
β(u−x)udu
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and f ∗αc δn − f → 0 as n → ∞. Therefore, to conclude this proof, we shall
show that

∫

∞

x
f(u − x)δn(u)e

β(u−x)udu → 0 in L2
+ as n → ∞. Let ǫ > 0 be

given. We choose N ∈ N such that supp δn ⊂ [0, ǫ), ∀n ≥ N . For any n ≥ N,
we have

∫

∞

0

|
∫

∞

x

f(u− x)δn(u)e
β(u−x)udu|2dx

≤
∫

∞

0

(
∫

∞

x

|f(u− x)||δn(u)|du
)2

dx

≤
∫

∞

0

M

∫

∞

x

|f(u− x)|2|δn(u)|du dx, (by Jensen’s inequality)

(Here M > 0 is as in the property (∆2) of (δn))

≤ M

∫

∞

0

|δn(u)|
∫ u

0

|f(u− x)|2dx du, (by Fubini’s theorem)

≤ M2‖f‖2
∞

ǫ, where ‖f‖
∞

= supt≥0 |f(t)|.
Since ǫ > 0 is arbitrary, the proof follows. �

Lemma 2.15. If f ∈ L2
+ and (δn) ∈ ∆(α), then f ∗αsc δn → f as n → ∞ in

L2
+.

Proof. Let f ∈ L2
+ and (δn) ∈ ∆(α). For ǫ > 0, choose g ∈ Cc([0,∞)) such that

‖f−g‖2 < ǫ. By Lemma 2.14, there is a positive integer N with ‖g∗αscδn−g‖2 <
ǫ for all n ≥ N. For any n ≥ N, we get that

‖f ∗αsc δn − f‖2

≤ |cα|
√

2

π
‖f − g‖2 ‖δn‖1 + ‖g ∗αsc δn − g‖2 + ‖g − f‖2, (by Lemma 2.13)

≤ M |cα|
√

2

π
‖f − g‖2 + ‖g ∗αsc δn − g‖2 + ‖g − f‖2,

(by property (∆2) of (δn))

< ǫM |cα|
√

2

π
+ ǫ+ ǫ = ǫ

(

M |cα|
√

2

π
+ 2

)

.

Since ǫ > 0 is arbitrary, it follows that f ∗αsc δn → f as n→ ∞ in L2
+. �

Theorem 2.16. If fn → f as n→ ∞ in L2
+ and (δn) ∈ ∆(α), then fn∗αscδn →

f as n→ ∞ in L2
+.

Proof. As a consequence of Lemma 2.15 and Lemma 2.13, it follows that

‖fn ∗αsc δn − f‖2 ≤M |cα|
√

2

π
‖fn − f‖2 + ‖f ∗αsc δn − f‖2 → 0

as n→ ∞, which completes the proof. �

Lemma 2.17. If f ∈ L2
+ and if g, h ∈ L1

+, then f ∗αsc (g ∗αc h) = (f ∗αsc g) ∗αsc h.
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Proof. It follows immediately, by using the same technique applied in the proof
of Lemma 2.5. �

Now, let Bα
S = B(L2

+, (L
1
+, ∗αc ), ∗αsc,∆(α)) and denote a typical element of

Bα
S by U = [(fn)/(δn)].

3. Fractional Fourier cosine transform on Boehmians

In this section, first we extend the frfct as a map from Bα
C onto the

Boehmian space B̂α
C = B(L2

+, (C
+
0 ∩ L1

+, ·), ·,∆α
C), where C

+
0 is the Banach

space of complex-valued continuous functions on [0,∞) vanishing at infinity,
with the norm ‖ψ‖

∞
= supx≥0 |ψ(x)|, ‘·’ denotes the usual point-wise multi-

plication of functions and ∆α
C =

{

(e−iaαu2

Fα
C (φn)) : (φn) ∈ ∆(α)

}

.

Lemma 3.1. Let f ∈ L2
+ and ψ ∈ C+

0 . Then f ·ψ ∈ L2
+ and fn ·ψ → f · ψ as

n→ ∞ in L2
+, whenever fn → f as n→ ∞ in L2

+.

Proof. Since ‖f ·ψ‖2 ≤ ‖f‖2‖ψ‖∞, the proof of this lemma follows immediately.
�

Lemma 3.2. If (δn) ∈ ∆(α), then e−iaαu2

Fα
C (δn) → 1 as n → ∞ uniformly

on each compact subset of [0,∞).

Proof. Let K be a compact subset of [0,∞) and let ǫ > 0 be given. Choose
a positive integer N such that supp δn ⊂ [0, ǫ) for all n ≥ N. Then for u ∈ K
and n ≥ N , we have

|e−iaαu2

[Fα
C (δn)](u)− 1|

≤ |cα|
√

2

π

∫ ǫ

0

|δn(x)| | cos(bαux)− 1| dx, ∀n ≥ N

≤ |cα|
√

2

π

∫ ǫ

0

|δn(x)| |bαux|| sin z| dx,

(by mean-value theorem, such a z exists in (0, |bα|ux))

≤ ǫM |bαcα|
√

2

π
sup
t∈K

|t|.

Since ǫ > 0 is arbitrary, the proof follows. �

Lemma 3.3. If f ∈ L2
+ and (δn) ∈ ∆(α), then f · e−iaαu2

Fα
C (δn) → f as

n→ ∞ in L2
+.

Proof. Let ǫ > 0 be arbitrary. Since Cc([0,∞)) is dense in L2
+, choose g ∈

Cc([0,∞)) such that ‖f − g‖2 < ǫ
2 . By the property (∆2) of (δn), we get that

|[Fα
C (δn)](u)| = |e−iaαu2

[Fα
C (δn)](u)| ≤

∫

∞

0
|δn(x)|dx ≤ M, ∀n ∈ N for some

M > 0. If K = supp g, then K is compact. Then, using Lemma 3.2, we find



804 C, GANESAN AND R. ROOPKUMAR

N ∈ N such that |e−iaαy2

Fα
C (δn)(y) − 1| < ǫ, ∀y ∈ K ∀n ≥ N. Therefore, for

any n ≥ N,

‖f · e−iaαu2

Fα
C (δn)− f‖2

≤ ‖(f − g) · e−iaαu2

Fα
C (δn)‖2 + ‖g · [e−iaαu2

Fα
C (δn)− 1]‖2 + ‖g − f‖2

≤ M‖f − g‖2 + {
∫

K

|g(y)|2|e−iaαy2

Fα
C (δn)](y)− 1|2dy} 1

2 + ‖g − f‖2

≤ ǫ(M + ‖g‖2 + 1).

Since ǫ > 0 is arbitrary, the proof follows. �

Lemma 3.4. Let fn → f as n → ∞ in L2
+ and (δn) ∈ ∆(α). Then fn ·

e−iaαy2

Fα
C (δn) → f as n→ ∞ in L2

+.

Proof. Proof of this lemma is similar to that of Lemma 2.10, which can obtained
by using Lemmas 3.1 and 3.3. �

Lemma 3.5. If (δn), (φn) ∈ ∆(α), then (e−iaαy2

Fα
C (δn) · e−iaαy2

Fα
C (φn)) ∈

∆α
C .

Proof. It follows immediately from Lemma 2.8 and Theorem 2.6. �

Thus the Boehmian space B̂α
C is constructed and we denote a typical element

of B̂α
C by V = [(gn)/(e

−iaαy2

Fα
C (δn))].

Definition. We define the extended frfct Fα
C : Bα

C → B̂α
C by Fα

C (X) =

[(Fα
Cfn)/(e

−iaαy2

Fα
C δn)], where X = [(fn), (δn)] ∈ Bα

C .

Suppose [(fn), (δn)] ∈ Bα
C , then for all n,m ∈ N, we have fn ∗αc δm =

fm ∗αc δn, which implies that Fα
C (fn ∗αc δm)(u) = Fα

C (fm ∗αc δn)(u). Applying
the convolution theorem, we get that

e−iaαu2

[Fα
C fn](u) · [Fα

C δm](u) = e−iaαu2

[Fα
Cfm](u) · [Fα

C δn](u)

and hence [Fα
C fn](u) · e−iaαu2

[Fα
C δm](u) = [Fα

C fm](u) · e−iaαu2

[Fα
C δn](u). By a

similar argument, it is easy to prove that Fα
C (X) is independent of the choice

of the representative of X. Thus, frfct is well-defined.

Theorem 3.6. The frfct Fα
C : Bα

C → B̂α
C is consistent with Fα

C : L2
+ → L2

+.

Proof. If f ∈ L2
+ then F = [(f ∗αc δn), (δn)] is the Boehmian representing

f in Bα
C . By definition, we have Fα

C (F) = [(Fα
C (f ∗αc δn)), (e−iaαu2

Fα
C δn)] =

[(Fα
Cf ·e−iaαu2

Fα
C δn)/(e

−iaαu2

Fα
C δn)], which is the Boehmian representing Fα

Cf

in B̂α
C . �

Theorem 3.7. The frfct Fα
C : Bα

C → B̂α
C is a bijective linear map.
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Proof. Let X = [(fn), (δn)], and Y = [(gn), (φn)] ∈ Bα
C be such that Fα

C (X) =
Fα

C (Y ). Therefore, it follows that

[(Fα
C fn)/(e

−iaαu2

Fα
C δn)] = [(Fα

Cgn)/(e
−iaαu2

Fα
Cφn)]

and hence for any n,m ∈ N,

e−iaαu2

[Fα
Cfn](u) · [Fα

Cφm](u) = e−iaαu2

[Fα
Cgm](u) · [Fα

C δn](u).

Using the convolution Theorem 2.7, we have Fα
C (fn ∗αc φm) = Fα

C (gm ∗αc δn),
∀m,n ∈ N, which implies that fn ∗αc φm = gm ∗αc δn, ∀n,m ∈ N and hence
X = Y .

Let X = [(gn)/(e
−iaαu2

Fα
C δn)] ∈ B̂α

C . Since F
α
C : L2

+ → L2
+ is onto, choose

fn ∈ L2
+ such that gn = Fα

Cfn for each n ∈ N. For any n,m ∈ N, we get

that [Fα
Cfn](u) · e−iaαu2

[Fα
C δm](u) = [Fα

Cfm](u) · e−iaαu2

[Fα
C δn](u). Therefore,

by convolution theorem, we have [Fα
C (fn ∗αc δm)](u) = [Fα

C (fm ∗αc δn)](u), and
hence fn ∗αc δm = fm ∗αc δn. Thus X = [(fn), (δn)] ∈ Bα

C and Fα
C (X) =

[(Fα
Cfn)/(e

−iaαu2

Fα
C δn)] = X , which implies that Fα

C is a surjective map.
The linearity of the Fα

C follows from the linearity of Fα
C and Theorem 2.7.

�

Theorem 3.8 (Convolution theorem for frfct on Boehmians). If X ∈ Bα
C

and h ∈ L1
+, then Fα

C (X ∗αc h) = Fα
C (X) · e−iaαu2

Fα
Ch.

Proof. Let X = [(fn), (δn)] and h ∈ L1
+. By using Theorem 2.7,

F
α
C (X ∗αc h) = F

α
C [(fn ∗αc h), (δn)] = [Fα

C (fn ∗αc h)/(e−iaαu2

Fα
C δn)]

= [(e−iaαu2

Fα
Cfn · Fα

Ch)/(e
−iaαu2

Fα
C δn)]

= [(Fα
Cfn)/(e

−iaαu2

Fα
C δn)] · e−iaαu2

Fα
Ch

= F
α
C (X) · e−iaαu2

Fα
Ch. �

Theorem 3.9. The frfct on Bα
C is continuous with respect to δ-convergence

and ∆-convergence.

Proof. Let Xn
δ→ X as n → ∞ in Bα

C . By the definition of δ-convergence,
Xn ∗αc δk, X ∗αc δk ∈ L2

+ and Xn ∗αc δk → X ∗αc δk as n→ ∞ in L2
+ for each fixed

k ∈ N and for some (δn) ∈ ∆(α).
In view of Theorems 3.8 and 3.6, we get that

F
α
C (Xn) · e−iaαu2

Fα
C δk = F

α
C (Xn ∗αc δk) = Fα

C (Xn ∗αc δk) ∈ L2
+

and
F

α
C (X) · e−iaαu2

Fα
C δk = F

α
C (X ∗αc δk) = Fα

C (X ∗αc δk) ∈ L2
+

for all n, k ∈ N. Further, using the continuity of the frfct, we obtain

F
α
C (Xn) ·e−iaαu2

Fα
C δk = Fα

C (Xn∗αc δk) → Fα
C (X ∗αc δk) = F

α
C (X) ·e−iaαu2

Fα
C δk

as n→ ∞ in L2
+, for each fixed k ∈ N. Hence Fα

C (Xn)
δ→ Fα

C (X) as n→ ∞.
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Let Xn
∆→ X as n→ ∞. Then there exists (δn) ∈ ∆(α) such that

(Xn −X) ∗αc δn ∈ L2
+, ∀n ∈ N and (Xn −X) ∗c δn → 0 as n→ ∞ in L2

+.

Now using Theorems 3.7 and 3.6, we have for each n ∈ N,

[Fα
C (Xn)− F

α
C (X)] · e−iaαu2

Fα
C δn = F

α
C (Xn −X) · e−iaαu2

Fα
C δn

= Fα
C ((Xn −X) ∗αc δn),

which belongs to L2
+ and the continuity of Fα

C on L2
+ yields that

[Fα
C (Xn)− F

α
C (X)] · e−iaαu2

Fα
C δn = Fα

C ((Xn −X) ∗αc δn) → 0

as n→ ∞ in L2
+. This shows that Fα

C (Xn)
∆→ Fα

C (X) as n→ ∞. �

4. Fractional Fourier sine transform on Boehmians

In this section, we extend the frfst as a mapping from the Boehmian space

Bα
S onto the Boehmian space B̂α

C .

Definition. For each U = [(fn), (δn)] ∈ Bα
S , we define the extended frfst of

U by Fα
S (U) = [(Fα

S fn)/(e
−iaαy2

Fα
C δn)].

If [(fn), (δn)], [(gn), (ǫn)] in Bα
S such that [(fn), (δn)] = [(gn), (ǫn)], then

we have fn ∗αsc ǫm = gm ∗αsc δn, ∀m,n ∈ N. As in the case of frfct on

Boehmians, applying Theorem 2.7(ii), we get that Fα
S (fn)e

−iaαy2

Fα
C (ǫm) =

Fα
S (gm)e−iaαy2

Fα
C (δn), ∀m,n ∈ N. This implies that the images of [(fn), (δn)]

and [(gn), (ǫn)] are same in B̂α
C . Thus, Fα

S : Bα
S → B̂α

C is well-defined.

Theorem 4.1. The frfst Fα
S : Bα

S → B̂α
C is consistent with Fα

S : L2
+ → L2

+.

Proof. Let f ∈ L2
+ be arbitrary. Then, the Boehmian representing f is of

the form [(f ∗αsc δn), (δn)], where (δn) ∈ ∆(α) is arbitrary. Then, Theorem

2.7(ii) implies that Fα
S ([(f ∗αsc δn), (δn)]) = [(Fα

S (f ∗αsc δn))/(e−iaαy2

Fα
C δn)] =

[(Fα
S (f)e

−iaαy2

Fα
C (δn))/(e

−iaαy2

Fα
C δn)], which is the representation of Fα

S (f)

in B̂α
C . Hence, Fα

S is consistent with Fα
S . �

Theorem 4.2. The frfst Fα
S : Bα

S → B̂α
C is a bijective linear map.

Proof. The linearity Fα
S is a direct consequence of linearity of the Fα

S on L2
+

and the convolution theorem (Theorem 2.7(ii)). To prove the injectivity, let
[(fn), (δn)] and [(gn), (ǫn)] in Bα

S be such that

[(Fα
S fn)/(e

−iaαy2

Fα
C δn)] = [(Fα

S gn)/(e
−iaαy2

Fα
C ǫn)].

Then, it follows that Fα
S (fn)e

−iaαy2

Fα
C (ǫm) = Fα

S (gm)e−iaαy2

Fα
C (δn), ∀m,n ∈

N. Applying Theorem 2.7(ii) and using the invertibility of Fα
S on both sides, we

obtain that fn ∗αsc ǫm = gm ∗αsc δn, ∀m,n ∈ N, which implies that [(fn), (δn)] =
[(gn), (ǫn)]. Therefore, Fα

S is injective on Bα
S . To prove that Fα

S : Bα
S →

B̂α
C is surjective, let [(gn)/(e

−iaαy2

Fα
C (δn))] ∈ B̂α

C be arbitrary. If we choose
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fn ∈ L2
+ such that Fα

S (fn) = gn for all n ∈ N, then adopting the proof of
Theorem 3.7, one can show that [(fn)/(δn)] ∈ Bα

S and that Fα
S ([(fn)/(δn)]) =

[(gn)/(e
−iaαy2

Fα
C (δn))] in B̂α

C . �

As the proofs of the following properties of Fα
S are much similar to that of

Fα
C in Section 3, we prefer to leave the details.

Theorem 4.3 (Convolution theorem for extended frfst). If U ∈ Bα
S and

h ∈ L1
+, then Fα

S (U ∗αsc h) = Fα
S (U) · e−iaαu2

Fα
Ch.

Theorem 4.4. The frfst on Bα
S is continuous with respect to δ-convergence

and ∆-convergence.

5. Concluding remarks

It is interesting to note that the Fourier sine and cosine transforms on
Boehmians discussed in [21, Section 3] becomes a particular case of this pa-
per, when α = π

2 . This is a first benefit of this paper, in pure mathematical
point of view. Furthermore, we see that the every distribution Λ with compact
support in [0,∞) can be identified as a member of Bα

C by the identification
Λ 7→ [(Λ ∗αc ϕn)/(ϕn)], where (ϕn) ∈ ∆(α) is such that ϕn is infinitely smooth
function on R having support in [0,∞), ∀n ∈ N and

(Λ ∗αc ϕ)(x) =
cα√
2π

〈Λ(y), [eβ(y2+xy)φ(x + y) + eβ(y
2
−xy)φ(|x − y|)]〉, ∀x ≥ 0.

Therefore, the extension of the fractional Fourier cosine transform discussed in
this paper properly generalizes the fractional Fourier cosine transform on L2

+,
which is a second benefit of this paper, in view of pure mathematics.

In signal processing, the Dirac’s delta function δ and convolution play a vital
role, especially to find the system waiting function of a linear time-invariant
system (LTI system) and the output of the LTI system, respectively. A filer in
signal processing is an example of an LTI system. So, if an integral transform
is used in signal processing, it is necessary to study the image of δ under the
transform and the convolution theorem of the transform.

In particular, it is well known that the fractional Fourier sine and cosine
transforms are having many applications in signal processing. We point out
that since δ is identified as the Boehmian [(δ ∗αc φn)/(φn)], using the extended
fractional Fourier cosine transform on Bα

C , we can find the image of the same.
Since, every Boehmian [(fn)/(φn)] can be approximated by the sequence of
functions (fn) (see [6]), the image of any Boehmian in Bα

C under Fα
C can be

approximated by sequence of functions. In particular, we can find the fractional
Fourier cosine transform of δ, approximately by sequence of functions.

In addition to this, since convolution theorems of these transforms are ob-
tained as products, one can find the fractional cosine (respectively, sine) convo-
lution of f and g easily by applying the inverse fractional Fourier cosine (respec-

tively, sine) transform on e−iaαu2

FC(f)FC(g) (respectively, e
−iaαu2

FC(f)FS(g)).
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Since all the properties of the fractional Fourier cosine and sine transforms
on function space are extended to the context of Boehmian space, we can freely
apply the extended fractional Fourier cosine and sine transform on any math-
ematical expression which involves both functions and generalized functions.

Acknowledgement. The authors sincerely thank the Referees for their valu-
able suggestions and comments which improved the content of the paper.
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