• 제목/요약/키워드: flux material

검색결과 917건 처리시간 0.031초

미분의 구형 형광체 제초에 있어서 융제의 영향 (The Effect of Flux on the Preparation of Spherical Fine Phosphor Particles)

  • 노현숙;강윤찬;서대종
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 추계학술대회 논문집
    • /
    • pp.570-573
    • /
    • 1999
  • High brightness (Y$_{x}$/Gd$_{1-x}$ )$_2$O$_3$:Eu Phosphor Particles were directly Prepared in the spray Pyrolysis by adding flux materials such as LiCl and HBO$_3$. The (Y$_{x}$/Gd$_{1-x}$ )$_2$O$_3$:Eu particles prepared from solution with flux material had higher PL (photoluminescence) intensities than those prepared from solution without flux. In the spray pyrolysis, the flux acts as promoter of the growth of crystallite and activation of doping material as in the solid state reaction method. Additionally, the flux improved PL intensity of (Y$_{x}$/Gd$_{1-x}$ )$_2$O$_3$:Eu phosphor particles by densifying the internal structure and eliminating the defect existing inside and surface of (Y$_{x}$/Gd$_{1-x}$ )$_2$O$_3$:Eu phosphor particles.r particles.

  • PDF

자기인가회로를 이용한 자속구속형 초전도한류기의 고장전류제한 특성 분석 (Analysis on Fault Current Limiting Characteristics of Flux-Lock Type SFCL Using Magnetic Flux Application Circuit)

  • 고주찬;임승택;임성훈
    • 한국전기전자재료학회논문지
    • /
    • 제30권1호
    • /
    • pp.37-41
    • /
    • 2017
  • In this paper, the fault current limiting characteristics of the flux-lock type SFCL (superconducting fault current limiter) using magnetic application circuit were analyzed. The flux-lock type SFCL has the structure to install the magnetic application circuit, which can increase the resistance of HTSC ($high-T_C$ superconducting element comprising) the SFCL. To analyze the fault current limiting effect of the flux-lock type SFCL through the magnetic flux application circuit, the flux-lock type SFCL either with the magnetic flux circuit or without the magnetic flux circuit was constructed and the fault current limiting characteristics of the SFCL were compared each other through the short-circuit tests.

화염으로부터의 복사 열유속의 계측 I (A study on the measurement of Radiative Heat flux form the flame(I) -Design and Calibration of a Heat flux meter-)

  • 정종수;인종수;김승수
    • 대한기계학회논문집
    • /
    • 제14권2호
    • /
    • pp.484-491
    • /
    • 1990
  • A heat-flux meter has been designed and manufactured to measure the heat flux from the flame. A calibration method of the heat-flux meter by a calibration furnace has also been proposed. The k-type (Chromel-Alumel) thermocouple material has been used as the material for the beat-flux meter. The electormotive force (e.m.f.) from the K-type thermocouple is shown to be linearly proportional to the heat flux absorbed. The characteristics of the heat-flux meter become better as the radius of heat absorbing disk becomes larger and its thickness thinner.

응력확대계수측정을 위한 하중에 의한 자속밀도변화의 이론적 해석 (Theoretical Analysis of Change in Magnetic Flux Density Due to Load for Measuring KI)

  • 이정희
    • 한국산업융합학회 논문집
    • /
    • 제6권4호
    • /
    • pp.367-371
    • /
    • 2003
  • In order to determine the effective way of measuring the Mode I stress intensity factor for a material containing a two-dimensional surface crack by means of the alternating current potential drop(ACPD) technique, the change in magnetic flux density between crack surfaces and above the specimen surface due to load was studied theoretically. The magnetic flux density in the air between crack surfaces is uniform and above the specimen surface is not changed by increasing the load in the material. Therefore, the change in potential drop due to load in a measuring system which was designed to induce a large amount of electro-motive force was caused by the change in internal inductance of material, the change in the mutual inductance between internal inductance of material and measuring system and the change in the mutual inductance between internal inductance of material and power supply line.

  • PDF

전동기 주 운전 영역에 따른 코어 재질 선정에 관한 연구 (A Study on the Selection of Core Materials in Motors according to Operating Speed Range)

  • 이병화;이상호;홍정표;하경호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.791-792
    • /
    • 2006
  • In motor design, an important factor is the content of silicon in coss material, which can effect the saturation of magnetic circuit and coss loss. While the content of silicon is high, the core loss will be reduced. At the same time, in order to assure the effective flux, the magnetizing current must be increased and then the copper loss becomes higher. Therefore the material with high content of silicon, which is used in the motor, can not always give the high efficiency. In this paper flux linkage of two different material s10 and s60 is compared according to the operating region and then exciting current to obtain same flux is estimated. By comparing core loss and copper loss between two material with the estimated current and flux linkage, this paper presents a criterion in determining the material for higher efficiency

  • PDF

비부식성 플럭스를 이용한 알루미늄 브레이징용 필러 소재의 저온 성형용 금속 복합 분말 개발 (Development of Metal Composite Powder Non-corrosive Flux for Low Temperature Forming of the Aluminum Brazing Filler Material)

  • 김대영;장하늘;윤대호;신윤호;김성호;최현주
    • 한국분말재료학회지
    • /
    • 제26권1호
    • /
    • pp.16-21
    • /
    • 2019
  • In aluminum brazing processes, corrosive flux, which is used in preventing oxidation, is currently raising environmental concerns because it generates many pollutants such as dioxin. The brazing process involving non-corrosive flux is known to encounter difficulties because the melting temperature of the flux is similar to that of the base material. In this study, a new brazing filler material is developed based on aluminum and non-corrosive flux composite powder. To minimize the interference of consolidation aluminum alloy powder by the flux, the flux is intentionally embedded in the aluminum alloy powder using a mechanical milling process. This study demonstrates that the morphology of the composite powder can be varied according to the mixing process, and this significantly affects the relative density and mechanical properties of the final filler samples.

교번자속인가에 의한 비정질 실리콘 박막의 결정화거동에 대한 연구 (Solid Phase Crystallization of LPCVD Amorphous Silicon Thin Films by Alternating Magnetic Flux)

  • 송아론;박상진;박성계;남승의;김형준
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 추계학술대회 논문집
    • /
    • pp.459-462
    • /
    • 2000
  • A new method for the fabrication of poly-Si films is reported using by alternating magnetic flux crystallization (AMFC) of LPCVD a-Si films. In this work we have studied the crystallization of LPCVD a-Si films by alternating magnetic flux. A-Si films were 1200$\AA$-thick deposited at 48$0^{\circ}C$ at a total pressure of 0.25Torr using Si$_2$H$_{6}$/H$_2$. After this step, these a-Si films were thermally annealed by Alternating Magnetic Flux at 43$0^{\circ}C$ for 1hours. The annealed films were characterized using X-ray diffraction (XRD), Raman Spectra, Atomic Force Microscopy(AFM). Both alternating magnetic flux crystallization and solid phase crystallization were investigated to compare enhanced crystallization a-Si. We have found that the low temperature crystallization method at 43$0^{\circ}C$ by alternating magnetic flux.x.

  • PDF

분리된 삼상 자속구속형 전류제한기와 일체화된 삼상 자속구속형 전류제한기의 전류제한 특성 비교 (Comparison of Fault Current Limiting Characteristics between the separated Three-phase Flux-lock Type SFCL and the Integrated Three-phase Flux-lock Type SFCL)

  • 두승규;두호익;김민주;박충렬;김용진;이동혁;한병성
    • 한국전기전자재료학회논문지
    • /
    • 제22권8호
    • /
    • pp.689-693
    • /
    • 2009
  • We investigate the comparison of fault current characteristics between the separates three-phase flux-lock type superconducting fault current limiter(SFCL) and integrated three-phase flux-lock type superconducting fault current limiter(SFCL). The single-phase flux-lock type SFCL consists of two coils. The primary coil is wound in parallel to the secondary coil on an iron core and superconducting elements are connected to secondary coil in series. Superconducting elements are used by the YBCO coated conductor. The separated three-phase flux-lock type SFCL consists of single-phase flux-phase type SFCL in each phase. But the integrated three-phase flux-lock type SFCL consists of three-phase flux-reactors wound on an iron core. Flux-reactor consists of the same turn's ratio between coil 1 and coil 2 for each single phase. To compare the current limiting characteristics of the separated three-phase flux-lock type SFCL and integrated three-phase flux-lock type SFCL, the short circuit experiments are carried out fault condition such as the single line-to-ground fault. The experimental result shows that fault current limiting characteristic of the separated three-phase flux-lock type SFCL was better than integrated three-phase flux-lock type SFCL. And the integrated three-phase flux-lock type SFCL has an effect on sound phase.

Specific Heat Measurement of Insulating Material using Heat Diffusion Method

  • Choi, Yeon-Suk;Kim, Dong-Lak
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제14권2호
    • /
    • pp.32-35
    • /
    • 2012
  • The objective of the present work is to develop a precise instrument for measuring the thermal property of insulating material over a temperature range from 30 K to near room temperature by utilizing a cryocooler. The instrument consists of two thermal links, a test sample, heat sink, heat source and vacuum vessel. The cold head of the cryocooler as a heat sink is thermally anchored to the thermal link and used to bring the apparatus to a desired temperature in a vacuum chamber. An electric heater as a heat source is placed in the middle of test sample for generating uniform heat flux. The entire apparatus is covered by thermal shields and wrapped in multi-layer insulation to minimize thermal radiation in a vacuum chamber. For a supplied heat flux the temperature distribution in the insulating material is measured in steady and transient state. The thermal conductivity of insulating material is measured from temperature difference for a given heat flux. In addition, the specific heat of insulating material is obtained by solving one-dimensional heat diffusion equation.

자속구속형 초전도전류제한기의 권선비 변화에 따른 전류제한 및 전압강하 보상 특성 (Current Limiting and Voltage Sag Suppressing Characteristics of Flux-lock Type SFCL According to Variations of Turn Number's Ratio)

  • 한태희;임성훈
    • 한국전기전자재료학회논문지
    • /
    • 제24권5호
    • /
    • pp.410-415
    • /
    • 2011
  • In this paper, we investigated the fault current limiting and the load voltage sag suppressing characteristics of the flux-lock type SFCL, designed with the additive polarity winding, according to the variations of turn number's ratio and the comparative analysis between the resistive type and the flux-lock type SFCLs were performed as well. From the analysis for the short-circuit tests, the flux-lock type SFCL designed with the larger turn number's ratio was shown to perform more effective fault current limiting and load voltage sag suppressing operations compared to the flux-lock type SFCL designed with the lower turn number's ratio through the fast quench occurrence of the high-$T_C$ superconducting (HTSC) element comprising the flux-lock type SFCL. In addition, the recovery time of the flux-lock type SFCL after the fault removed could be confirmed to be shorter in case of the flux-lock type SFCL designed with the lower turn number ratio.