DOI QR코드

DOI QR Code

Current Limiting and Voltage Sag Suppressing Characteristics of Flux-lock Type SFCL According to Variations of Turn Number's Ratio

자속구속형 초전도전류제한기의 권선비 변화에 따른 전류제한 및 전압강하 보상 특성

  • Han, Tae-Hee (Department of Energy Resources Engineering, Jungwon University) ;
  • Lim, Sung-Hun (Department of Electrical Engineering, Soongsil University)
  • 한태희 (중원대학교 에너지자원공학부) ;
  • 임성훈 (숭실대학교 전기공학과)
  • Received : 2010.11.15
  • Accepted : 2011.03.25
  • Published : 2011.05.11

Abstract

In this paper, we investigated the fault current limiting and the load voltage sag suppressing characteristics of the flux-lock type SFCL, designed with the additive polarity winding, according to the variations of turn number's ratio and the comparative analysis between the resistive type and the flux-lock type SFCLs were performed as well. From the analysis for the short-circuit tests, the flux-lock type SFCL designed with the larger turn number's ratio was shown to perform more effective fault current limiting and load voltage sag suppressing operations compared to the flux-lock type SFCL designed with the lower turn number's ratio through the fast quench occurrence of the high-$T_C$ superconducting (HTSC) element comprising the flux-lock type SFCL. In addition, the recovery time of the flux-lock type SFCL after the fault removed could be confirmed to be shorter in case of the flux-lock type SFCL designed with the lower turn number ratio.

Keywords

References

  1. B. W. Lee, J. S. Kang, K. B. Park, and I. S. OH, Supercond. and Cryogenics, 5, 10 (2003).
  2. H. Shimiwu, Y. Yokomizu, and T. Matsumura, IEEE Trans. Appl. Supercond., 14, 807 (2004). https://doi.org/10.1109/TASC.2004.830279
  3. T. Matsumura, M. Sugimura, Y. Yokomizu, H. Shimizu, M. Shibuya, M. Ichikawa, and H. Kado, IEEE Trans. Appl. Supercond., 15, 2015 (2005). https://doi.org/10.1109/TASC.2006.849440
  4. M. Maruyama, D. Iioka, Y. Yokomiwu, and T. Matsumura, IEEE Trans. Appl. Supercond., 17, 1819 (2007). https://doi.org/10.1109/TASC.2007.899692
  5. H. Kado and M. Ichikawa, IEEE Trans. Appl. Supercond., 7, 993 (1997). https://doi.org/10.1109/77.614672
  6. E. Thuries, V. D. Pham, Y. Laumond, U. Verhaege, A, Fevrier, M. Collet, and M. Bekhaled, IEEE Trans. On Power Del., 6, 801 (1991). https://doi.org/10.1109/61.131138
  7. S. H. Lim, H. S. Choi, and B. S. Han, Cryogenics, 44, 249 (2004). https://doi.org/10.1016/j.cryogenics.2003.11.002
  8. S. H. Lim, Trans. Appl. Supercond., 17, 1895 (2007). https://doi.org/10.1109/TASC.2007.899869
  9. S. H. Lim, H. S. Choi, and B. S. Han, Physica C, 416, 34 (2004). https://doi.org/10.1016/j.physc.2004.08.019
  10. S. H. Lim, H. G. Kang, H. S. Choi, S. R. Lee, and B. S. Han, IEEE Trans. on Appl. Supercond., 13, 2056 (2003). https://doi.org/10.1109/TASC.2003.812984
  11. H. S. Choi and S. H. Lim, IEEE Trans. Appl. Supercond., 17, 1823 (2007). https://doi.org/10.1109/TASC.2007.898482
  12. S. H. Lim, J. F. Moon, and J. C. Kim, IEEE Trans. on Appl. Supercond., 19, 1900 (2009). https://doi.org/10.1109/TASC.2009.2017710
  13. K. G. Oh, T. H. Han, Y. S. Cho, H. S. Cho, M. H. Choi, Y. H. Han, and T. H. Sung, J. KIIEE, 21, 107 (2007).