• Title/Summary/Keyword: fluorescence diagnosis

Search Result 138, Processing Time 0.027 seconds

Use of laser fluorescence device 'DIAGNODent$^{(R)}$' for detecting caries (레이저 우식진단기기 'DIAGNODent$^{(R)}$'의 활용)

  • Lee, Byoung-Jin
    • The Journal of the Korean dental association
    • /
    • v.49 no.8
    • /
    • pp.461-471
    • /
    • 2011
  • The detection of carious lesions is a key point to apply appropriate preventive measures or operative treatment of dental caries. A laser fluorescence device DIAGNOdent$^{(R)}$ (KaVo, Biberach, Germany) has also been shown to be of additional clinical value in the detection of initial caries. This report focus on the DIAGNOdent$^{(R)}$ for caries detection. DIAGNOdent$^{(R)}$ irradiate visible red light at a wavelength of 655 nm to elicit near-infrared fluorescence from caries lesion. This device is known as a reproducible method for caries detection, with good sensitivity and specificity especially for caries detection on occlusal and accessible smooth surfaces. DIAGNOdent$^{(R)}$ tended to be more sensitive method of detecting occlusal dentinal caries, however, showed more false-positive diagnoses than the visual inspection. So Clinician should not use the device as a clinician's primary diagnostic method and it is recommended that the device should be used in the decision-making process in relation to the diagnosis of caries as a second opinion in cases of doubt after visual inspection. The trend of modern dentistry would be a preventive approach rather than invasive treatment of the disease. This is possible only with early detection and respective preventive measures, DIAGNOdent$^{(R)}$ can help the changes.

Development of Excitation Light Source for Photodynamic Diagnosis of Cancer (광역학적 암진단을 위한 여기 광원장치의 개발)

  • Lim, Hyun-Soo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.6
    • /
    • pp.49-56
    • /
    • 2007
  • In this paper, the development of excitation light source is proposed for excitation light of the photodynamic therapy of cancer. Since the selection of the wavelength band of excitation light has an interrelation with fluorescence generation according to the selection of a photosensitizer. This study aims at designing and evaluating light source that can stably generate light with various kinds of wavelengths in order to make possible photodynamic diagnosis using a photosensitizer and diagnosis using auto-fluorescence. The light source device was a Xenon lamp and filter wheel, composed of an optical output control through iris and filters with several wavelength bands. It also makes the inducement of auto-fluorescence possible because it is designed to generate a wavelength band of 380-420nm, 430-480nm, 480-560nm. The transmission part of the light source was developed to enhance the efficiency of light transmission. To evaluate this light source device by KFDA#s technical reference, the characteristics of the light output and wavelength band were found.

Application of Multiparametric Flow Cytometry (FCM) to Enumerate the Diagnosis of Pseudomonas aeruginosa and Escherichia coli

  • Hwang, Myoung-Goo;Oh, Jung-Woo;Katayama, Hiroyuki;Ohgaki, Shinichiro;Cho, Jin-Kyu
    • Environmental Engineering Research
    • /
    • v.17 no.1
    • /
    • pp.35-39
    • /
    • 2012
  • In this study, multiparametric flow cytometry (FCM) was installed to enumerate the diagnosis of Pseudomonas aeruginosa ATCC 10145 and Escherichia coli K12 (IFO 3301). The nucleic acids (DNA/RNA) were double stained by a LIVE/DEAD bacLight viability kit, involving green SYTO 9 and red propidium iodide (PI), based on the permeability of two chemicals according to the integrity of plasma membrane. As the results showed, the gate for dead bacteria was defined as the range of $0.2{\times}10^0$ to $6.0{\times}10^1$ photo multiplier tube (PMT) 2 fluorescence (X-axis) and $2.0{\times}10^0$ to $2.0{\times}10^2$ PMT 4 fluorescence (Y-axis), and the gate for live bacteria was defined as the range of $6.0{\times}10^0$ to $6.0{\times}10^2$ PMT 2 fluorescence (X-axis) and $2.0{\times}10^0$ to $4.0{\times}10^2$ PMT 4 fluorescence (Y-axis). In the comparison of the number of the tested bacteria detected by FCM (viability assessment) and plate culture (cultivability assessment), the number of bacteria detected by FCM well represented the number of bacteria that was detected by the colony forming unit (CFU) counting method when bacteria were exposed to isopropyl alcohol and silver/copper cations. Consequently, it is concluded that the application of FCM to monitor the functional effect of disinfectants on the physiological status of target bacteria can offer more rapid and reliable data than the plate culture colony counting method.

Detection of proximal caries using quantitative light-induced fluorescence-digital and laser fluorescence: a comparative study

  • Yoon, Hyung-In;Yoo, Min-Jeong;Park, Eun-Jin
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.6
    • /
    • pp.432-438
    • /
    • 2017
  • PURPOSE. The purpose of this study was to evaluate the in vitro validity of quantitative light-induced fluorescence-digital (QLF-D) and laser fluorescence (DIAGNOdent) for assessing proximal caries in extracted premolars, using digital radiography as reference method. MATERIALS AND METHODS. A total of 102 extracted premolars with similar lengths and shapes were used. A single operator conducted all the examinations using three different detection methods (bitewing radiography, QLF-D, and DIAGNOdent). The bitewing x-ray scale, QLF-D fluorescence loss (${\Delta}F$), and DIAGNOdent peak readings were compared and statistically analyzed. RESULTS. Each method showed an excellent reliability. The correlation coefficient between bitewing radiography and QLF-D, DIAGNOdent were -0.644 and 0.448, respectively, while the value between QLF-D and DIAGNOdent was -0.382. The kappa statistics for bitewing radiography and QLF-D had a higher diagnosis consensus than those for bitewing radiography and DIAGNOdent. The QLF-D was moderately to highly accurate (AUC = 0.753 - 0.908), while DIAGNOdent was moderately to less accurate (AUC = 0.622 - 0.784). All detection methods showed statistically significant correlation and high correlation between the bitewing radiography and QLF-D. CONCLUSION. QLF-D was found to be a valid and reliable alternative diagnostic method to digital bitewing radiography for in vitro detection of proximal caries.

Fluorescence Image-Based Evaluation of Gastric Tube Perfusion during Esophagogastrostomy

  • Quan, Yu Hua;Han, Kook Nam;Kim, Hyun Koo
    • Journal of Chest Surgery
    • /
    • v.53 no.4
    • /
    • pp.178-183
    • /
    • 2020
  • During esophagectomy and esophagogastrostomy, the prediction of anastomotic leakage relies on the operating surgeon's tactile or visual diagnosis. Therefore, anastomotic leaks are relatively unpredictable, and new intraoperative evaluation methods or tools are essential. A fluorescence imaging system enables visualization over a wide region of interest, and provides intuitive information on perfusion intraoperatively. Surgeons can choose the best anastomotic site of the gastric tube based on fluorescence images in real time during surgery. This technology provides better surgical outcomes when used with an optimal injection dose and timing of indocyanine green.

Synthesis of 5-Aminolevulinic Acid (ALA) and Its t-Butyl Ester for the Fluorescence Detection of Early Cancer

  • Kang Min-Seok;Kim Dong-Myung;Kim Jeong Sook;Jeong Jin-Hyun
    • Archives of Pharmacal Research
    • /
    • v.28 no.10
    • /
    • pp.1111-1113
    • /
    • 2005
  • 5-Aminolevulinic acid and its derivatives, which are known to affect the early diagnosis and treatment of cancer, have been synthesized. Simple methods for the synthesis of 5-aminole-vulinic acid (ALA), a precursor of porphyrins, have been developed in our laboratory for use in studies on the biosynthesis of porphyrins.

Study on Improvement of Signal to Background Ratio of Laser-based Fluorescence Imaging System (레이저 기반 형광 영상 시스템의 Signal to Background Ratio 향상 연구)

  • Kim, J.H.;Jeong, M.Y.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.107-111
    • /
    • 2020
  • Recently, as an aging society progresses, a lot of interest in health and diagnosis is increasing, As the field of various bio-imaging systems for guided surgery capable of accurate diagnosis has emerged as important, a Fluorescence imaging system capable of accurate measurement and real-time confirmation has emerged as an important field. Fluorescence images currently being used are mainly in the NIR-I band, but many studies are in progress in the NIR-II band in order to improve resolution and confirm fluorescence deeply and accurately. In this paper, the difference between NIR-I and NIR-II, optical characteristics, and SBR (signal to background ration) of a fluorescent imaging system, was investigated using the finite element (FEM) method. After confirming, it was confirmed that the SBR was 16.2 times higher in the NIR-II area than in the NIR-I by making the skin phantom and measuring the fluorescence. It is confirmed that the enhancement in SBR of the Fluorescence imaging system is more effective in the NIR-II region than in the NIR-I region and expected to be used in application fields such as guided surgery, bio-sensor and also device which can detect the defect of optical devices.

Development of An Integration Management System of Analyzing Fluorescence Images on Smart Phone (모바일용 형광이미지 분석 통합관리 시스템 개발)

  • Cho, Mi-Gyung;Shim, Jae-Sool
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.916-919
    • /
    • 2012
  • Bioimaging that can be imaging phenomena within cells of a molecular size have been advanced in technology. We can observe clearly DNA and proteins using a confocal microscope. Currently biological fluorescent imaging area is used essentially for diagnosis and treatment in health and clinical care field. In this paper, we developed an integration management system of analyzing fluorescence images on smart phone. It can support a user to analyse fluorescence images anytime anywhere. And our system is based on client-server configuration and has functions that can figure intensity of fluorescence images and manage many imaging data. Proposed system can be a mean of ubiquitous health because it helps a doctor diagnose by analyzing fluorescence images of emergency patients without time and space restrictions.

  • PDF

Imaging Evaluation of Peritoneal Metastasis: Current and Promising Techniques

  • Chen Fu;Bangxing Zhang;Tiankang Guo;Junliang Li
    • Korean Journal of Radiology
    • /
    • v.25 no.1
    • /
    • pp.86-102
    • /
    • 2024
  • Early diagnosis, accurate assessment, and localization of peritoneal metastasis (PM) are essential for the selection of appropriate treatments and surgical guidance. However, available imaging modalities (computed tomography [CT], conventional magnetic resonance imaging [MRI], and 18fluorodeoxyglucose positron emission tomography [PET]/CT) have limitations. The advent of new imaging techniques and novel molecular imaging agents have revealed molecular processes in the tumor microenvironment as an application for the early diagnosis and assessment of PM as well as real-time guided surgical resection, which has changed clinical management. In contrast to clinical imaging, which is purely qualitative and subjective for interpreting macroscopic structures, radiomics and artificial intelligence (AI) capitalize on high-dimensional numerical data from images that may reflect tumor pathophysiology. A predictive model can be used to predict the occurrence, recurrence, and prognosis of PM, thereby avoiding unnecessary exploratory surgeries. This review summarizes the role and status of different imaging techniques, especially new imaging strategies such as spectral photon-counting CT, fibroblast activation protein inhibitor (FAPI) PET/CT, near-infrared fluorescence imaging, and PET/MRI, for early diagnosis, assessment of surgical indications, and recurrence monitoring in patients with PM. The clinical applications, limitations, and solutions for fluorescence imaging, radiomics, and AI are also discussed.