DOI QR코드

DOI QR Code

Fluorescence Image-Based Evaluation of Gastric Tube Perfusion during Esophagogastrostomy

  • Quan, Yu Hua (Department of Thoracic and Cardiovascular Surgery, Korea University Guro Hospital, Korea University College of Medicine) ;
  • Han, Kook Nam (Department of Thoracic and Cardiovascular Surgery, Korea University Guro Hospital, Korea University College of Medicine) ;
  • Kim, Hyun Koo (Department of Thoracic and Cardiovascular Surgery, Korea University Guro Hospital, Korea University College of Medicine)
  • Received : 2020.05.11
  • Accepted : 2020.06.10
  • Published : 2020.08.05

Abstract

During esophagectomy and esophagogastrostomy, the prediction of anastomotic leakage relies on the operating surgeon's tactile or visual diagnosis. Therefore, anastomotic leaks are relatively unpredictable, and new intraoperative evaluation methods or tools are essential. A fluorescence imaging system enables visualization over a wide region of interest, and provides intuitive information on perfusion intraoperatively. Surgeons can choose the best anastomotic site of the gastric tube based on fluorescence images in real time during surgery. This technology provides better surgical outcomes when used with an optimal injection dose and timing of indocyanine green.

Keywords

References

  1. Bailey SH, Bull DA, Harpole DH, et al. Outcomes after esophagectomy: a ten-year prospective cohort. Ann Thorac Surg 2003;75:217-22. https://doi.org/10.1016/S0003-4975(02)04368-0
  2. Ferguson MK, Martin TR, Reeder LB, Olak J. Mortality after esophagectomy: risk factor analysis. World J Surg 1997;21:599-604. https://doi.org/10.1007/s002689900279
  3. Sarela AI, Tolan DJ, Harris K, Dexter SP, Sue-Ling HM. Anastomotic leakage after esophagectomy for cancer: a mortality-free experience. J Am Coll Surg 2008;206:516-23. https://doi.org/10.1016/j.jamcollsurg.2007.09.016
  4. Udagawa H, Akiyama H. Surgical treatment of esophageal cancer: Tokyo experience of the three-field technique. Dis Esophagus 2001;14:110-4. https://doi.org/10.1046/j.1442-2050.2001.00166.x
  5. Roh S, Iannettoni MD, Keech J, et al. Timing of esophagectomy after neoadjuvant chemoradiation therapy affects the incidence of anastomotic leaks. Korean J Thorac Cardiovasc Surg 2019;52:1-8. https://doi.org/10.5090/kjtcs.2019.52.1.1
  6. Van Daele E, van Nieuwenhove Y, Ceelen W, et al. Near-infrared fluorescence guided esophageal reconstructive surgery: a systematic review. World J Gastrointest Oncol 2019;11:250-63. https://doi.org/10.4251/wjgo.v11.i3.250
  7. Urschel JD. Esophagogastrostomy anastomotic leaks complicating esophagectomy: a review. Am J Surg 1995;169:634-40. https://doi.org/10.1016/S0002-9610(99)80238-4
  8. Boyle NH, Pearce A, Hunter D, Owen WJ, Mason RC. Intraoperative scanning laser Doppler flowmetry in the assessment of gastric tube perfusion during esophageal resection. J Am Coll Surg 1999;188:498-502. https://doi.org/10.1016/S1072-7515(99)00016-2
  9. Dewar L, Gelfand G, Finley RJ, Evans K, Inculet R, Nelems B. Factors affecting cervical anastomotic leak and stricture formation following esophagogastrectomy and gastric tube interposition. Am J Surg 1992;163:484-9. https://doi.org/10.1016/0002-9610(92)90393-6
  10. Liebermann-Meffert DM, Meier R, Siewert JR. Vascular anatomy of the gastric tube used for esophageal reconstruction. Ann Thorac Surg 1992;54:1110-5. https://doi.org/10.1016/0003-4975(92)90077-H
  11. Meyerson SL, Mehta CK. Managing complications II: conduit failure and conduit airway fistulas. J Thorac Dis 2014;6(Suppl 3):S364-71.
  12. Karliczek A, Benaron DA, Baas PC, Zeebregts CJ, Wiggers T, van Dam GM. Intraoperative assessment of microperfusion with visible light spectroscopy for prediction of anastomotic leakage in colorectal anastomoses. Colorectal Dis 2010;12:1018-25. https://doi.org/10.1111/j.1463-1318.2009.01944.x
  13. Karliczek A, Harlaar NJ, Zeebregts CJ, Wiggers T, Baas PC, van Dam GM. Surgeons lack predictive accuracy for anastomotic leakage in gastrointestinal surgery. Int J Colorectal Dis 2009;24:569-76. https://doi.org/10.1007/s00384-009-0658-6
  14. Quan YH, Kim M, Kim HK, Kim BM. Fluorescent image-based evaluation of gastric conduit perfusion in a preclinical ischemia model. J Thorac Dis 2018;10:5359-67. https://doi.org/10.21037/jtd.2018.08.46
  15. Pacheco PE, Hill SM, Henriques SM, Paulsen JK, Anderson RC. The novel use of intraoperative laser-induced fluorescence of indocyanine green tissue angiography for evaluation of the gastric conduit in esophageal reconstructive surgery. Am J Surg 2013;205:349-53. https://doi.org/10.1016/j.amjsurg.2012.11.005
  16. Pierie JP, de Graaf PW, Poen H, van der Tweel I, Obertop H. Impaired healing of cervical oesophagogastrostomies can be predicted by estimation of gastric serosal blood perfusion by laser Doppler flowmetry. Eur J Surg 1994;160:599-603.
  17. Shimada Y, Okumura T, Nagata T, Sawada S, Matsui K, Hori R, et al. Usefulness of blood supply visualization by indocyanine green fluorescence for reconstruction during esophagectomy. Esophagus 2011;8:259-66. https://doi.org/10.1007/s10388-011-0291-7
  18. Kawada K, Hasegawa S, Wada T, et al. Evaluation of intestinal perfusion by ICG fluorescence imaging in laparoscopic colorectal surgery with DST anastomosis. Surg Endosc 2017;31:1061-9. https://doi.org/10.1007/s00464-016-5064-x
  19. Zehetner J, DeMeester SR, Alicuben ET, et al. Intraoperative assessment of perfusion of the gastric graft and correlation with anastomotic leaks after esophagectomy. Ann Surg 2015;262:74-8. https://doi.org/10.1097/SLA.0000000000000811
  20. Seyama Y, Kubota K, Sano K, et al. Long-term outcome of extended hemihepatectomy for hilar bile duct cancer with no mortality and high survival rate. Ann Surg 2003;238:73-83. https://doi.org/10.1097/01.SLA.0000074960.55004.72
  21. Alford R, Simpson HM, Duberman J, et al. Toxicity of organic fluorophores used in molecular imaging: literature review. Mol Imaging 2009;8:341-54.
  22. Oh Y, Quan YH, Kim M, Kim BM, Kim HK. Intraoperative fluorescence image-guided pulmonary segmentectomy. J Surg Res 2015;199:287-93. https://doi.org/10.1016/j.jss.2015.05.009
  23. Koyanagi K, Ozawa S, Oguma J, et al. Blood flow speed of the gastric conduit assessed by indocyanine green fluorescence: new predictive evaluation of anastomotic leakage after esophagectomy, Medicine (Baltimore) 2016;95:e4386. https://doi.org/10.1097/md.0000000000004386
  24. Ishige F, Nabeya Y, Hoshino I, et al. Quantitative assessment of the blood perfusion of the gastric conduit by indocyanine green imaging. J Surg Res 2019;234:303-10. https://doi.org/10.1016/j.jss.2018.08.056
  25. Ishiguro T, Kumagai Y, Ono T, et al. Usefulness of indocyanine green angiography for evaluation of blood supply in a reconstructed gastric tube during esophagectomy. Int Surg 2012;97:340-4. https://doi.org/10.9738/CC159.1
  26. Kumagai Y, Ishiguro T, Haga N, Kuwabara K, Kawano T, Ishida H. Hemodynamics of the reconstructed gastric tube during esophagectomy: assessment of outcomes with indocyanine green fluorescence. World J Surg 2014;38:138-43. https://doi.org/10.1007/s00268-013-2237-9
  27. Rino Y, Yukawa N, Sato T, et al. Visualization of blood supply route to the reconstructed stomach by indocyanine green fluorescence imaging during esophagectomy. BMC Med Imaging 2014;14:18. https://doi.org/10.1186/1471-2342-14-18
  28. Zehetner J, DeMeester SR, Ayazi S, Kilday P, Alicuben ET, De-Meester TR. Laparoscopic wedge fundectomy for collis gastroplasty creation in patients with a foreshortened esophagus. Ann Surg 2014;260:1030-3. https://doi.org/10.1097/SLA.0000000000000504
  29. Fikfak V, Gaur P, Kim MP. Endoscopic evaluation of gastric conduit perfusion in minimally invasive Ivor Lewis esophagectomy. Int J Surg Case Rep 2016;19:112-4. https://doi.org/10.1016/j.ijscr.2015.12.029
  30. Hachey KJ, Gilmore DM, Armstrong KW, et al. Safety and feasibility of near-infrared image-guided lymphatic mapping of regional lymph nodes in esophageal cancer. J Thorac Cardiovasc Surg 2016;152:546-54. https://doi.org/10.1016/j.jtcvs.2016.04.025
  31. Ohi M, Toiyama Y, Mohri Y, et al. Prevalence of anastomotic leak and the impact of indocyanine green fluorescein imaging for evaluating blood flow in the gastric conduit following esophageal cancer surgery. Esophagus 2017;14:351-9. https://doi.org/10.1007/s10388-017-0585-5
  32. Kumagai Y, Hatano S, Sobajima J, et al. Indocyanine green fluorescence angiography of the reconstructed gastric tube during esophagectomy: efficacy of the 90-second rule. Dis Esophagus 2018;31:doy052.
  33. Nishikawa K, Fujita T, Yuda M, et al. Quantitative assessment of blood flow in the gastric conduit with thermal imaging for esophageal reconstruction. Ann Surg 2020;271:1087-94. https://doi.org/10.1097/SLA.0000000000003169
  34. Campbell C, Reames MK, Robinson M, Symanowski J, Salo JC. Conduit vascular evaluation is associated with reduction in anastomotic leak after esophagectomy. J Gastrointest Surg 2015;19:806-12. https://doi.org/10.1007/s11605-015-2794-3
  35. Kitagawa H, Namikawa T, Munekage M, Akimori T, Kobayashi M, Hanazaki K. Visualization of the Stomach's arterial networks during esophageal surgery using the HyperEye Medical System. Anticancer Res 2015;35:6201-5.
  36. Kamiya K, Unno N, Miyazaki S, et al. Quantitative assessment of the free jejunal graft perfusion. J Surg Res 2015;194:394-9. https://doi.org/10.1016/j.jss.2014.10.049
  37. Schlottmann F, Barbetta A, Mungo B, Lidor AO, Molena D. Identification of the lymphatic drainage pattern of esophageal cancer with near-infrared fluorescent imaging. J Laparoendosc Adv Surg Tech A 2017;27:268-71. https://doi.org/10.1089/lap.2016.0523
  38. DeLong JC, Kelly KJ, Jacobsen GR, Sandler BJ, Horgan S, Bouvet M. The benefits and limitations of robotic assisted transhiatal esophagectomy for esophageal cancer. J Vis Surg 2016;2:156. https://doi.org/10.21037/jovs.2016.09.01
  39. Karampinis I, Ronellenfitsch U, Mertens C, et al. Indocyanine green tissue angiography affects anastomotic leakage after esophagectomy: a retrospective, case-control study. Int J Surg 2017;48:210-4. https://doi.org/10.1016/j.ijsu.2017.11.001
  40. Noma K, Shirakawa Y, Kanaya N, et al. Visualized evaluation of blood flow to the gastric conduit and complications in esophageal reconstruction. J Am Coll Surg 2018;226:241-51. https://doi.org/10.1016/j.jamcollsurg.2017.11.007
  41. Sugimura K, Miyata H, Shinno N, et al. Indocyanine green fluorescence imaging of the tracheal blood flow during esophagectomy. J Surg Res 2019;241:1-7. https://doi.org/10.1016/j.jss.2019.03.019
  42. Saito T, Yano M, Motoori M, et al. Subtotal gastrectomy for gastric tube cancer after esophagectomy: a safe procedure preserving the proximal part of gastric tube based on intraoperative ICG blood flow evaluation. J Surg Oncol 2012;106:107-10. https://doi.org/10.1002/jso.23050
  43. Miyauchi W, Shishido Y, Kono Y, et al. Less invasive surgery for remnant stomach cancer after esophago-proximal gastrectomy with ICG-guided blood flow evaluation: a case report. Yonago Acta Med 2018;61:187-91. https://doi.org/10.33160/yam.2018.09.007
  44. Van Daele E, van Nieuwenhove Y, Ceelen W, et al. Assessment of graft perfusion and oxygenation for improved outcome in esophageal cancer surgery: protocol for a single-center prospective observational study. Medicine (Baltimore) 2018;97:e12073. https://doi.org/10.1097/md.0000000000012073
  45. Murawa D, Hunerbein M, Spychala A, Nowaczyk P, Polom K, Murawa P. Indocyanine green angiography for evaluation of gastric conduit perfusion during esophagectomy: first experience. Acta Chir Belg 2012;112:275-80. https://doi.org/10.1080/00015458.2012.11680838

Cited by

  1. Design and Testing of Augmented Reality-Based Fluorescence Imaging Goggle for Intraoperative Imaging-Guided Surgery vol.11, pp.6, 2021, https://doi.org/10.3390/diagnostics11060927