• Title/Summary/Keyword: fluid intelligence

Search Result 36, Processing Time 0.021 seconds

AN INVERSTIGATION OF THE DYNAMIC ERRORS OF THE REMOTE-INSTANTANEOUS FLOWRATE MEASUREMENT DUE TO PARAMETER CHANGES

  • Kim, Do-Tae;Yokota, Shinichi;Nakano, Kazuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1712-1717
    • /
    • 1991
  • The paper describes estimation errors of unsteady flowrate measurements due to parameter changes in a quasi-remote instantaneous flowrate measurement method (abbreviate as QIFM) and an instantaneous flowrate measurement method using two points pressure measurements (abbreviate as TPFM). By introducing error performance index, the influence of parameter changes on the accuracy, and dynamic response of the estimated unsteady flowrate are evaluated. Of four parameters, the variation of the length of the pipeline and speed of sound produce large errors in the estimated unsteady flowrate during transient periods. The effect of kinematic viscosity of the working fluid(oil) is relatively insensitive in unsteady flowrate estimation.

  • PDF

MODELING AND SIMULATION FOR GAS PIPELINE SYSTEMS

  • Yoshida, Makoto;Kawato, Takashi;Fujita, Toshinori;Kawashima, Kenji;Kagawa, Toshiharu
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2001.10a
    • /
    • pp.335-339
    • /
    • 2001
  • City gas is one of the most important necessities of daily city life and social infrastructures. City gas is delivered to every user through a pipeline network. The gas pressure in the pipeline is regulated by gas regulator. In the pressure control system, characteristics of gas pipeline is as important as characteristics of regulator. There are many reports about the transfer function model of the fluid pipeline. But suitable model about the gas transmission pipeline is not known. In this paper, as the transfer function model of the gas pipeline, new model considering the heat transfer between pipe wall and gas and temperature change of gas is proposed. To evaluate this model, frequency response tests are used. As the result, the proposed model shows a better agreement when compared with the experimental result than conventional models. The results show the effectiveness of the model.

  • PDF

Fluid intake, hydration status and its association with cognitive function among adolescents in Petaling Perdana, Selangor, Malaysia

  • Tung, Serene En Hui;Ch'ng, Yi Zhang;Karnan, Thaneswary V;Chong, Pei Nee;Zubaidah, Jamil Osman;Chin, Yit Siew
    • Nutrition Research and Practice
    • /
    • v.14 no.5
    • /
    • pp.490-500
    • /
    • 2020
  • BACKGROUND/OBJECTIVES: A cross-sectional study was undertaken to evaluate fluid intake and hydration status in association with cognitive function among 230 adolescents (10-14 years of age) in Petaling Perdana, Selangor, Malaysia. SUBJECTS/METHODS: Urine color was used to measure hydration status, while fluid intake was assessed using the 15-item beverage intake questionnaire. Cognitive function was assessed using the Wechsler Intelligence Scale for Children, Fourth Edition. RESULTS: More than half of the adolescents were mildly or moderately dehydrated (59.6%) and only one-third (33.0%) were well hydrated. Among the daily fluid types, intakes of soft drinks (r = -0.180; P = 0.006), sweetened tea (r = -0.184; P = 0.005) and total sugar-sweetened beverages (SSBs) (r = -0.199; P = 0.002) were negatively correlated with cognitive function. In terms of hydration status, cognitive function score was significantly higher (F-ratio = 4.102; P = 0.018) among hydrated adolescents (100.38 ± 12.01) than in dehydrated (92.00 ± 13.63) counterparts. Hierarchical multiple linear regression analysis, after adjusting for socio-demographic factors, showed that soft drinks (β = -0.009; P < 0.05) and sweetened tea (β = -0.019; P < 0.05) negatively predicted cognitive function (ΔR2 = 0.044). When further control for sources of fluid, hydration status (β = -2.839; P < 0.05) was shown to negatively predict cognitive function (ΔR2 = 0.021). The above variables contributed 20.1% of the variance in cognitive function. CONCLUSIONS: The results highlight the links between fluid intake (soft drinks, sweetened tea, total SSBs) and hydration status with cognitive function in adolescents. Interventions aimed at decreasing the consumption of SSBs and increasing hydration status through healthy fluid choices, such as water, could improve cognitive performance in adolescents.

ANFIS Intelligence Control of a Semi-Active Suspension System (반능동 현가장치의 ANFIS 지능제어)

  • 이육형;박명관
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.144-147
    • /
    • 2000
  • In this paper, ANFIS intelligence control of a semi-active suspension system is investigated. The strength of the ER damper is controlled by a high voltage power supply. This paper deals with a two-degree-of-freedom suspension using the damper with ERF for a quarter vehicle system. The control law for semi-active suspensions modeled in this study is developed using passive and ANFlS control method. Computer simulation results show that the semi-active suspension with ERF damper has good performances of ride quality

  • PDF

Intelligence Control Characteristics of a Digital Damper (디지털 댐퍼의 지능제어 특성)

  • Song, Joon-Ho;Lee, Yuk-Hyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.3
    • /
    • pp.5-10
    • /
    • 2006
  • The objective of this paper is to investigate the Intelligence control characteristics of a digital damper. This paper deals with a two-degree-of-freedom suspension using the damper with ER fluid for a quarter vehicle system. The control law for semi-active suspensions modeled in this study is developed using passive and ANFIS control method. Computer simulation results show that the semi-active suspension with ER damper has good performances of ride quality.

  • PDF

Design of intelligent computing networks for a two-phase fluid flow with dusty particles hanging above a stretched cylinder

  • Tayyab Zamir;Farooq Ahmed Shah;Muhammad Shoaib;Atta Ullah
    • Computers and Concrete
    • /
    • v.32 no.4
    • /
    • pp.399-410
    • /
    • 2023
  • This study proposes a novel use of backpropagated Levenberg-Marquardt neural networks based on computational intelligence heuristics to comprehend the examination of hybrid nanoparticles on the flow of dusty liquid via stretched cylinder. A two-phase model is employed in the present work to describe the fluid flow. The use of desulphated nanoparticles of silver and molybdenum suspended in water as base fluid. The mathematical model represented in terms of partial differential equations, Implementing similarity transformationsis model is converted to ordinary differential equations for the analysis . By adjusting the particle mass concentration and curvature parameter, a unique technique is utilized to generate a dataset for the proposed Levenberg-Marquardt neural networks in various nanoparticle circumstances on the flow of dusty liquid via stretched cylinder. The intelligent solver Levenberg-Marquardt neural networks is trained, tested and verified to identify the nanoparticles on the flow of dusty liquid solution for various situations. The Levenberg-Marquardt neural networks approach is applied for the solution of the hybrid nanoparticles on the flow of dusty liquid via stretched cylinder model. It is validated by comparison with the standard solution, regression analysis, histograms, and absolute error analysis. Strong agreement between proposed results and reference solutions as well as accuracy provide an evidence of the framework's validity.

A Study on the Structure of Intelligence Measured by the K-WPPSI-IV (한국 웩슬러 유아지능검사 4판(K-WPPSI-IV)의 지능구조에 관한 연구)

  • Lee, KyungOk;Park, Hyewon;Lee, Sanghee
    • Korean Journal of Child Studies
    • /
    • v.37 no.6
    • /
    • pp.107-117
    • /
    • 2016
  • Objective: This study examined the construct validity of K-WPPSI-IV. Factor structures of the structures of the K-WPPSI-IV full scale as well as primary index scales for two age ranges (2 years, 6 months to 3 years, 11 months; 4 years to 7 years, 7 months) were examined. Methods: Data were collected from 1,700 children aged 2 years, 6 months to 7 years, 7 months during the K-WPPSI-IV standardization. Confirmatory factor analyses were conducted using the K-WPPSI-IV subtest performances with maximum likelihood estimation using Amos 18. Results: First, the three-factor model (verbal comprehension, visual spatial, and working memory) fitted best for the younger age range. However, the five-factor model (verbal comprehension, visual spatial, fluid reasoning, working memory, and processing speed) fitted best for the older age range. Residuals suggest the presence of two nested subfactors within the verbal comprehension factor (broad/expressive and focused/simple). Second, the confirmatory factor analysis on primary index subtests identified factors that account for the intercorrelations among the reduced sets of primary index subtests. Conclusion: The findings showed that the theoretical structures of WPPSI-IV subtests were confirmed within K-WPPSI-IV.

Combining Hough Transform and Fuzzy Unsupervised Learning Strategy in Automatic Segmentation of Large Bowel Obstruction Area from Erect Abdominal Radiographs

  • Kwang Baek Kim;Doo Heon Song;Hyun Jun Park
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.4
    • /
    • pp.322-328
    • /
    • 2023
  • The number of senior citizens with large bowel obstruction is steadily growing in Korea. Plain radiography was used to examine the severity and treatment of this phenomenon. To avoid examiner subjectivity in radiography readings, we propose an automatic segmentation method to identify fluid-filled areas indicative of large bowel obstruction. Our proposed method applies the Hough transform to locate suspicious areas successfully and applies the possibilistic fuzzy c-means unsupervised learning algorithm to form the target area in a noisy environment. In an experiment with 104 real-world large-bowel obstruction radiographs, the proposed method successfully identified all suspicious areas in 73 of 104 input images and partially identified the target area in another 21 images. Additionally, the proposed method shows a true-positive rate of over 91% and false-positive rate of less than 3% for pixel-level area formation. These performance evaluation statistics are significantly better than those of the possibilistic c-means and fuzzy c-means-based strategies; thus, this hybrid strategy of automatic segmentation of large bowel suspicious areas is successful and might be feasible for real-world use.

Resonance analysis of cantilever porous graphene platelet reinforced pipe under external load

  • Huang, Qinghua;Yu, Xinping;Lv, Jun;Zhou, Jilie;Elvenia, Marischa Ray
    • Steel and Composite Structures
    • /
    • v.45 no.3
    • /
    • pp.409-423
    • /
    • 2022
  • Nowadays, there is a high demand for great structural implementation and multifunctionality with excellent mechanical properties. The porous structures reinforced by graphene platelets (GPLs) having valuable properties, such as heat resistance, lightweight, and excellent energy absorption, have been considerably used in different engineering implementations. However, stiffness of porous structures reduces significantly, due to the internal cavities, by adding GPLs into porous medium, effective mechanical properties of the porous structure considerably enhance. This paper is relating to vibration analysis of fluidconveying cantilever porous graphene platelet reinforced (GPLR) pipe with fractional viscoelastic model resting on foundations. A dynamical model of cantilever porous GPLR pipes conveying fluid and resting on a foundation is proposed, and the vibration, natural frequencies and primary resonant of such a system are explored. The pipe body is considered to be composed of GPLR viscoelastic polymeric pipe with porosity in which Halpin-Tsai scheme in conjunction with the fractional viscoelastic model is used to govern the construction relation of nanocomposite pipe. Three different porosity distributions through the pipe thickness are introduced. The harmonic concentrated force is also applied to the pipe and the excitation frequency is close to the first natural frequency. The governing equation for transverse motions of the pipe is derived by the Hamilton principle and then discretized by the Galerkin procedure. In order to obtain the frequency-response equation, the differential equation is solved with the assumption of small displacement, damping coefficient, and excitation amplitude by the multiple scale method. A parametric sensitivity analysis is carried out to reveal the influence of different parameters, such as nanocomposite pipe properties, fluid velocity and nonlinear viscoelastic foundation coefficients, on the primary resonance and linear natural frequency. Results indicate that the GPLs weight fraction porosity coefficient, fractional derivative order and the retardation time have substantial influences on the dynamic response of the system.

Mathematical thinking, its neural systems and implication for education (수학적 사고에 동원되는 두뇌 영역들과 이의 교육학적 의미)

  • Kim, Yeon Mi
    • The Mathematical Education
    • /
    • v.52 no.1
    • /
    • pp.19-41
    • /
    • 2013
  • What is the foundation of mathematical thinking? Is it logic based symbolic language system? or does it rely more on mental imagery and visuo-spatial abilities? What kind of neural changes happen if someone's mathematical abilities improve through practice? To answer these questions, basic cognitive processes including long term memory, working memory, visuo-spatial perception, number processes are considered through neuropsychological outcomes. Neuronal changes following development and practices are inspected and we can show there are neural networks critical for the mathematical thinking and development: prefrontal-anterior cingulate-parietal network. Through these inquiry, we can infer the answer to our question.