Browse > Article
http://dx.doi.org/10.7468/mathedu.2013.52.1.019

Mathematical thinking, its neural systems and implication for education  

Kim, Yeon Mi (Department of Basic Science, Hong Ik University)
Publication Information
The Mathematical Education / v.52, no.1, 2013 , pp. 19-41 More about this Journal
Abstract
What is the foundation of mathematical thinking? Is it logic based symbolic language system? or does it rely more on mental imagery and visuo-spatial abilities? What kind of neural changes happen if someone's mathematical abilities improve through practice? To answer these questions, basic cognitive processes including long term memory, working memory, visuo-spatial perception, number processes are considered through neuropsychological outcomes. Neuronal changes following development and practices are inspected and we can show there are neural networks critical for the mathematical thinking and development: prefrontal-anterior cingulate-parietal network. Through these inquiry, we can infer the answer to our question.
Keywords
mathematical cognition; fMRI; working memory; central executive function; memory based instruction; neural plasticity; mental imagery; fluid intelligence; visuospatial sketchpad;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Thompson-Schill, S.L., D'Esposito, M., Aguirre, G.K., & Farah, M.J. (1997). Role of left prefrontal cortex in retrieval of semantic knowledge: A re-evaluation, Proceedings of the National Academy of Science 94(26), 14792-14797.
2 Tulving, E. (1983). Elements of Episodic Memory, Oxford: Oxford University Press.
3 van Nes, F. & De Lange, J. (2007). Mathematics Education and Neuroscience: Relating spatial structures for the development of spatial sense and number sense, The Montana Council of Teachers of Mathematics 4(2), 210-229.
4 Varma, S., McCallin, B, & Schwartz, D. (2008). Scientific and pragmatic challenges for bridging education and neuroscience, Educational Researcher 37(3), 140-152.   DOI
5 Wynn, K. (1992). Addition and subtraction by human infant, Nature 358(6389), 749-750   DOI   ScienceOn
6 Wright, R. Thompson, W., Gains, G., Newcombe, N. & Kosslyn, S. (2008). Training generalized skills, Psychonomic Bulletin & Review 15(4), 763-771.   DOI   ScienceOn
7 Zago, L., Pesenti, M., Mellet, E., Crivello, F., Mazoyer, B., & Tzourio-Mazoyer, N. (2001). Neural correlates of simple and complex mental calculation, Neuroimage 13(2), 314-327.
8 Zhu, Z. (2007). Gender differences in mathematical problem solving patterens: A review of literature, International Educational Joural Education 8(2), 187-203.
9 Prabhakaran, V., Rypma, B., Gabrieli, J. (2001). Neural substrates of mathematical reasoning: an fMRI study of neocortical activation during performance of a necessary mathematics operations test, Neuropsychology 15(1), 115-127.   DOI   ScienceOn
10 Qin, Y., Carter, C.S., Silk, E., Stenger, V.A., Fissell, K., Goode, A. & Anderson, J.R. (2004). The change of the brain activation patterns as children learn algebra equation solving, Proceedings of National Academy of Sciences 101(15), 5686-5691.
11 Rasmussen, C., & Bisanz, J. (2005). Representation and working memory in early arithmetic, Journal of Experimental Child Psychology 91, 137-157.   DOI   ScienceOn
12 Rittle-Johnson, B. & Aliblai, M.W. (1999). Conceptual and procedural knowledge in learning mathematics: Does one lead to another? Journal of educational Psychology 91(1), 175-189.   DOI   ScienceOn
13 Rivera, S.M., Reiss, A.L., Eckert, M.A., & Menon, V. (2005). Developmental changes in mental arithmetic: Evidence for increased specialization in the left inferior parietal cortex, Cerebral Cortex 15(11), 1779-1790.   DOI   ScienceOn
14 Rubinsten O. & Henik A. (2009). Developmental dyscalculia: heterogeneity might not mean different mechanisms, Trends in Cognitive. Science 13(2), 92-99.
15 Schroeder, B. (2011). Investigating a metacognitive strategy for solving indefinite integration problems in Calculus, thesis, University of Connecticut.
16 Schwanenflugel, P.J. (1991). Why are abstract concepts hard to understand? In P.J. Schwanenflugel (Ed.), The psychology of word meanings (235-250). Hillsdale: Erlbaum.
17 Simon, T.J. (1999). The foundations of numerical thinking in a brain without numbers, Trends in Cognitive Sciences 3(10), 363-365.   DOI   ScienceOn
18 Sohn, M.H., Goode, A., Koedinger, K.R., Stenger, V.A., Fissell, K., & Carter, C.S.. (2004). Behavioral equivalence, but not neural equivalence-neural evidence of alternative strategies in mathematical thinking, Nature Neuroscience 7(11), 1193-1194.   DOI   ScienceOn
19 Squire, L.R. (1994). Declarative and non-declarative memory: Multiple brain systems supporing learning and memory. In D.L. Schacter & E. Tulving (Eds.), Memory Systems (203-231). Cambridge: MIT Press.
20 Tall, D.O. (1998). Symbols and the Bifurcation between Procedural and Conceptual Thinking, Plenary presentation at the International Conference on the Teaching of Mathematics, Samos.
21 Tang, Y., Zhang, W., Chen, K., Feng, S., Ti, Y., Shen, T. Reiman, E., & Liu, Y. (2006). Arithemetic Processing in the brain shaped by cultures, PNAS 103(28), 10775-10780.   DOI   ScienceOn
22 Terao, A., Koedinger, K.R., Sohn, M.H., Qin, Y., Anderson, J.R., Carter, C.S., (2004). An fMRI study of the interplay of symbolic and visuo-spatial systems in mathematical reasoning, Proceedings of the Twenty-sixth Annual Conference of the Cognitive Science Society. Mahwah: Erlbaum.
23 Thomas, M., Wilson, A., Corballis, M., Lim, V., & Yoon, C. (2010). Evidence from cognitive neuroscience for the role of graphical and algebraic representations in understanding function, ZDM Mathematics Education 42(6), 607-619.   DOI
24 Jung, R.E., & Haier, R.J. (2007). The parieto-frontal integration theory (P-FIT) of intelligence: converging neuroimaging evidence. Behav. Brain Sci. 30(2), 135-154.   DOI
25 Knauff, M., Mulack, T., Kassubek, J., Salih, H.R. & Greenlee, M.W. (2002). Spatial imagery in deductive reasoning: A functional MRI study, Brain Research: Cognitive Brain Research 13(2), 203-312.   DOI   ScienceOn
26 Kong, J., Wang, C., Kong, K., vangel, M., Chua, E., & Gollup, R. (2005). The neural substrates of arithmetic operations and procedure complexity, Cognitive Brain Research 22(3), 397-405.   DOI   ScienceOn
27 Kosslyn, S.M. (2007). Human intelligence can be increased, and can be increased dramatically, Edge World Question Center. Reprinted in J. Brockman (Ed.), What are you optimistic about: Today's leading thinkers on why things are good and getting better (285-287). New York: Harper.
28 Krueger, F., Spampinato, M.V., Pardini, M., Pajevic, S., Wood, J.N., Weiss, G.H., Landgraf, S., & Grafman. (2008). Integral calculus problem solving: an fMRI study, Neuroreport 19(11), 1095-1099.   DOI   ScienceOn
29 Krutetskii, V. A. (1976). The psychology of mathematical abilities in schoolchildren, Chicago: University of Chicago Press.
30 Lee, K., Lim, Z.Y., Yeong, S., Ng, S.F., Venkatraman, V., & Chee, M. (2007). Strategic differences in algebraic problem solving: Neuroanatomical correlates, Brain Research 1155(June), 163-171.   DOI   ScienceOn
31 Maguire, E., Woollett, K., & Spiers, H. (2006). London Taxi drivers and bus drivers: a structural MRI and neuropsychological analysis, Hippocampus 16(12), 1091-1101.   DOI   ScienceOn
32 McGee, M. (1979). Human spatial abi1ities: Psychometric studies and environmental, genetic, hormonal, and neurological Influences, Psychological Bulletin 86(5), 889-918.   DOI   ScienceOn
33 Mc Neil, N.M. & Jarvin, L. (2007). When theories don't add up: Disentangling the manipulatives debate, Theory into Practice 46(4), 309-316.   DOI   ScienceOn
34 Michelli, A., Crinion, J., Noppeney, U., O'Doherty, J., Ashburner, J., Frackowiak, R., & Price, C. (2004). Structural plasticity in the bilingual brain, Nature 431(October).
35 Mohler, J.L. (1997). An instructional method for the AutoCAD modelling environment, Engineering Design Graphics Journal 61(1), 5-13.
36 Newman, S.D.& Just, M.A. (2005). The neural bases of intelligence: a per-spective based on functional neuroimaging. In J. Sternberg & J. Pretz (Eds.), Cognition and Intelligence: Identifying the Mechanisms of the Mind (88-103). New York: Cambridge University Press.
37 Paivio, A. (1991). Dual coding theory: Retrospect and current status. Canadian Journal of Psychology/ Revue canadienne de psychologie 45(3), 255-287.   DOI
38 Pauli, P., Lutzenberger, W., Rau, H., Birbaumer, N., Rickard, T.C., Yaroush, R.A., & Bourne, L.E. Jr. (1994). Brain potentials during mental arithmetic: Effects of extensive practice and problem difficulty. Brain Research, Cognitive Brain Research 2, 21-29.   DOI   ScienceOn
39 Davis, G., Hill, D., & Smith, N. (2000). A memorybased model for aspects of mathematics teaching. In T. Nakahara & M. Koyama(Eds.), Proceedings of 24th Conference of the International Group for the Psychology of Mathematics Education 2, 25-232. Hiroshima: Hiroshima University.
40 Dehaene, S. (1997). The number sense, New York: Oxford University Press.
41 Dehaene, S. & Cohen, L. (1997). Cerebral pathways for calculation: double dissociation between rote verbal and quantitative knowledge of arithmetic. Cortex 33(2), 219-250.   DOI   ScienceOn
42 Dehaene, S., Piazza, M., Pinel, P. & Cohen, L. (2003). Three parietal circuits for number processing, Cognitive Neuropsychology 20(3/4/5/6), 487-560.   DOI   ScienceOn
43 Delazer, M., Domahs, F., Bartha, L., Brenneis, C., Lochy, A., Trieb, T., & Benke, T. (2003). Learning complex arithmetic-An fMRI Study. Cogn Brain Res 18(1), 76-88.   DOI   ScienceOn
44 Dragansky, B., Gaser, C., Kempermann, G., Kuhn, H., Winkler, J., Buchel, C., & May, A. (2006). Temporal and Spatial Dynamics of Brain Structure Changes during Extensive Learning, The Journal of Neuroscience 26(23), 6314- 6317.   DOI   ScienceOn
45 Dubinsky, E. (1991). Reflective abstraction in advanced mathematical thinking. In D. Tall, (Ed.). Advanced Mathematical Thinking (95-126). Dordrecht: Kluwer.
46 Geary, D.C., Hoard, M.K. (2005). Learning disabilities in arithmetic and mathematics: theoretical and empirical perspectives. In Campbell, J.I.D. (Ed.), Handbook of mathematical cognition (253-267). New York: Psychology Press.
47 Geary, D.C. (2011). Consequences, characterristics, characteristics, and causes of poor mathematics achevement and mathematical learning disabilities, Journal of Developmental and Behavioral Pediatrics 32(3), 250-263.   DOI
48 Goel, V. & Dolan, R.J. (2001) Functional neuroanatomy of three-term relational reasoning, Neuropsychologia 39(9), 901-909.   DOI   ScienceOn
49 Grabner, R.H., Ischebeck A., Koppelstatter F., Reishofer, G., Koschutnig, K. Delazer, M., Ebner, F., & Neuper, C. (2009). Fact Learning in Complex Arithmetic and Figural-Spatial Tasks: The Role of the Angular Gyrus and its Relation to Mathematical Competence, Human Brain Mapping 30(9), 2936-2952.   DOI   ScienceOn
50 Goswami, U. (2004). Neuroscience and Education, British Journal of Educational Psychology 74(1), 1-14.   DOI   ScienceOn
51 Hadamard, J. (1990). 수학 분야에서 발명의 심리학 (정계섭 역). 서울: 범양사. (원저 1957년 출판)
52 Heathcote, D. (1994). The role of visuo-spatial working memory in the mental addition of multi-digit addends, Current Psychology of Cognition 13(2), 207-245.
53 Holmes, J., & Adams., J. W. (2006). Working memory and children's mathematical skills: Implications for mathematical development and mathematical curricula. Educational Psychology 26, 339-366.   DOI   ScienceOn
54 Jarrold, C. & Bayliss, D.M. (2007). Variation in working memory due to typical and typical development. In A.R.A. Conway, C. Jarrold, M.J. Kane, A. Miyake & J.N. Towse (Eds.). Variation in working memory (137-161). New York: Oxford University Press.
55 김연미 (2011). 신경심리학에 근거한 수학학습장애의 유형분류 및 심층진단검사의 개발을 위한 기초연구, 초등수학교육 14(3), 237-260.(Kim, Y.M. (2011). Neuropsychological approaches to mathematical learning disabilities and research on the development of diagnostic test, Education of Primary School Mathematics 14(3), 237-260.)
56 황우형 (2003). 수학교육에서 바라본 학습심리학의 발달과 전망, 수학교육 42(2), 121-135.(Whang, W. H. (2003). Prospective view of developmental process and the future prospect of psychology of learning mathematics, The Mathematical Education 42(2), 121-135.)
57 Alloway, T.P., Gathercole, S.E., Kirkwood, H., & Elliott, J. (2009). The cognitive and behavioral characteristics of children with low working memory, Child Development 80(2), 606-621.   DOI   ScienceOn
58 Alloway, T.P., Alloway, R.G. (2010). Investigating the predictive roles of working memory and IQ in academic attainment, Journal of Experimental Child Psychology 106(1), 20-29.   DOI   ScienceOn
59 Anderson, J. (2005). Human symbol manipulation within an integrated cognitive architecture, Cognitive Science 29(3), 313-341.   DOI   ScienceOn
60 Baddley, A.D. & Hitch, G. (1974). Working memory. In G.H. Bower (Ed.), The psychology of learning and motivation: Advances in research and theory 8 (47-89). New York: Academic Press.
61 Changeux, J.P. & Conne, A. (2002). 정신, 물질 그리고 수학 (강주현 역), 서울: 경문사. (원저 1989 출판)
62 Barsalou, L.W., Simmons, W., Barbey, A.K., & Wilson, C.D. (1999). Grounding conceptual knowledge in modalityspecific systems, Trends in Cognitive Sciences 7(2), 84-91.
63 Barsalou, L.W., & Wiemer-Hastings, K. (2005). Situating abstract concepts. In D. Pecher & R.A. Zwaan (Eds.), Grounding cognition: The role of perception and action in memory, language, and thinking (129-163). Cambridge: Cambridge University Press.
64 Chan, J., McDermott, K., & Roediger, I.H. (2006). Retrieval-Induced Facilitation: Initially Nontested Material Can Benefit From Prior testing of Related Material, Journal of Experimental Psychology General 135(4), 553-571.   DOI   ScienceOn