DOI QR코드

DOI QR Code

Mathematical thinking, its neural systems and implication for education

수학적 사고에 동원되는 두뇌 영역들과 이의 교육학적 의미

  • Kim, Yeon Mi (Department of Basic Science, Hong Ik University)
  • Received : 2012.08.08
  • Accepted : 2013.01.22
  • Published : 2013.02.28

Abstract

What is the foundation of mathematical thinking? Is it logic based symbolic language system? or does it rely more on mental imagery and visuo-spatial abilities? What kind of neural changes happen if someone's mathematical abilities improve through practice? To answer these questions, basic cognitive processes including long term memory, working memory, visuo-spatial perception, number processes are considered through neuropsychological outcomes. Neuronal changes following development and practices are inspected and we can show there are neural networks critical for the mathematical thinking and development: prefrontal-anterior cingulate-parietal network. Through these inquiry, we can infer the answer to our question.

Keywords

References

  1. 김연미 (2011). 신경심리학에 근거한 수학학습장애의 유형분류 및 심층진단검사의 개발을 위한 기초연구, 초등수학교육 14(3), 237-260.(Kim, Y.M. (2011). Neuropsychological approaches to mathematical learning disabilities and research on the development of diagnostic test, Education of Primary School Mathematics 14(3), 237-260.)
  2. 황우형 (2003). 수학교육에서 바라본 학습심리학의 발달과 전망, 수학교육 42(2), 121-135.(Whang, W. H. (2003). Prospective view of developmental process and the future prospect of psychology of learning mathematics, The Mathematical Education 42(2), 121-135.)
  3. Alloway, T.P., Gathercole, S.E., Kirkwood, H., & Elliott, J. (2009). The cognitive and behavioral characteristics of children with low working memory, Child Development 80(2), 606-621. https://doi.org/10.1111/j.1467-8624.2009.01282.x
  4. Alloway, T.P., Alloway, R.G. (2010). Investigating the predictive roles of working memory and IQ in academic attainment, Journal of Experimental Child Psychology 106(1), 20-29. https://doi.org/10.1016/j.jecp.2009.11.003
  5. Anderson, J. (2005). Human symbol manipulation within an integrated cognitive architecture, Cognitive Science 29(3), 313-341. https://doi.org/10.1207/s15516709cog0000_22
  6. Baddley, A.D. & Hitch, G. (1974). Working memory. In G.H. Bower (Ed.), The psychology of learning and motivation: Advances in research and theory 8 (47-89). New York: Academic Press.
  7. Barsalou, L.W., Simmons, W., Barbey, A.K., & Wilson, C.D. (1999). Grounding conceptual knowledge in modalityspecific systems, Trends in Cognitive Sciences 7(2), 84-91.
  8. Barsalou, L.W., & Wiemer-Hastings, K. (2005). Situating abstract concepts. In D. Pecher & R.A. Zwaan (Eds.), Grounding cognition: The role of perception and action in memory, language, and thinking (129-163). Cambridge: Cambridge University Press.
  9. Chan, J., McDermott, K., & Roediger, I.H. (2006). Retrieval-Induced Facilitation: Initially Nontested Material Can Benefit From Prior testing of Related Material, Journal of Experimental Psychology General 135(4), 553-571. https://doi.org/10.1037/0096-3445.135.4.553
  10. Changeux, J.P. & Conne, A. (2002). 정신, 물질 그리고 수학 (강주현 역), 서울: 경문사. (원저 1989 출판)
  11. Davis, G., Hill, D., & Smith, N. (2000). A memorybased model for aspects of mathematics teaching. In T. Nakahara & M. Koyama(Eds.), Proceedings of 24th Conference of the International Group for the Psychology of Mathematics Education 2, 25-232. Hiroshima: Hiroshima University.
  12. Dehaene, S. (1997). The number sense, New York: Oxford University Press.
  13. Dehaene, S. & Cohen, L. (1997). Cerebral pathways for calculation: double dissociation between rote verbal and quantitative knowledge of arithmetic. Cortex 33(2), 219-250. https://doi.org/10.1016/S0010-9452(08)70002-9
  14. Dehaene, S., Piazza, M., Pinel, P. & Cohen, L. (2003). Three parietal circuits for number processing, Cognitive Neuropsychology 20(3/4/5/6), 487-560. https://doi.org/10.1080/02643290244000239
  15. Delazer, M., Domahs, F., Bartha, L., Brenneis, C., Lochy, A., Trieb, T., & Benke, T. (2003). Learning complex arithmetic-An fMRI Study. Cogn Brain Res 18(1), 76-88. https://doi.org/10.1016/j.cogbrainres.2003.09.005
  16. Dragansky, B., Gaser, C., Kempermann, G., Kuhn, H., Winkler, J., Buchel, C., & May, A. (2006). Temporal and Spatial Dynamics of Brain Structure Changes during Extensive Learning, The Journal of Neuroscience 26(23), 6314- 6317. https://doi.org/10.1523/JNEUROSCI.4628-05.2006
  17. Dubinsky, E. (1991). Reflective abstraction in advanced mathematical thinking. In D. Tall, (Ed.). Advanced Mathematical Thinking (95-126). Dordrecht: Kluwer.
  18. Geary, D.C., Hoard, M.K. (2005). Learning disabilities in arithmetic and mathematics: theoretical and empirical perspectives. In Campbell, J.I.D. (Ed.), Handbook of mathematical cognition (253-267). New York: Psychology Press.
  19. Geary, D.C. (2011). Consequences, characterristics, characteristics, and causes of poor mathematics achevement and mathematical learning disabilities, Journal of Developmental and Behavioral Pediatrics 32(3), 250-263. https://doi.org/10.1097/DBP.0b013e318209edef
  20. Goel, V. & Dolan, R.J. (2001) Functional neuroanatomy of three-term relational reasoning, Neuropsychologia 39(9), 901-909. https://doi.org/10.1016/S0028-3932(01)00024-0
  21. Grabner, R.H., Ischebeck A., Koppelstatter F., Reishofer, G., Koschutnig, K. Delazer, M., Ebner, F., & Neuper, C. (2009). Fact Learning in Complex Arithmetic and Figural-Spatial Tasks: The Role of the Angular Gyrus and its Relation to Mathematical Competence, Human Brain Mapping 30(9), 2936-2952. https://doi.org/10.1002/hbm.20720
  22. Goswami, U. (2004). Neuroscience and Education, British Journal of Educational Psychology 74(1), 1-14. https://doi.org/10.1348/000709904322848798
  23. Hadamard, J. (1990). 수학 분야에서 발명의 심리학 (정계섭 역). 서울: 범양사. (원저 1957년 출판)
  24. Heathcote, D. (1994). The role of visuo-spatial working memory in the mental addition of multi-digit addends, Current Psychology of Cognition 13(2), 207-245.
  25. Holmes, J., & Adams., J. W. (2006). Working memory and children's mathematical skills: Implications for mathematical development and mathematical curricula. Educational Psychology 26, 339-366. https://doi.org/10.1080/01443410500341056
  26. Jarrold, C. & Bayliss, D.M. (2007). Variation in working memory due to typical and typical development. In A.R.A. Conway, C. Jarrold, M.J. Kane, A. Miyake & J.N. Towse (Eds.). Variation in working memory (137-161). New York: Oxford University Press.
  27. Jung, R.E., & Haier, R.J. (2007). The parieto-frontal integration theory (P-FIT) of intelligence: converging neuroimaging evidence. Behav. Brain Sci. 30(2), 135-154. https://doi.org/10.1017/S0140525X07001185
  28. Knauff, M., Mulack, T., Kassubek, J., Salih, H.R. & Greenlee, M.W. (2002). Spatial imagery in deductive reasoning: A functional MRI study, Brain Research: Cognitive Brain Research 13(2), 203-312. https://doi.org/10.1016/S0926-6410(01)00116-1
  29. Kong, J., Wang, C., Kong, K., vangel, M., Chua, E., & Gollup, R. (2005). The neural substrates of arithmetic operations and procedure complexity, Cognitive Brain Research 22(3), 397-405. https://doi.org/10.1016/j.cogbrainres.2004.09.011
  30. Kosslyn, S.M. (2007). Human intelligence can be increased, and can be increased dramatically, Edge World Question Center. Reprinted in J. Brockman (Ed.), What are you optimistic about: Today's leading thinkers on why things are good and getting better (285-287). New York: Harper.
  31. Krueger, F., Spampinato, M.V., Pardini, M., Pajevic, S., Wood, J.N., Weiss, G.H., Landgraf, S., & Grafman. (2008). Integral calculus problem solving: an fMRI study, Neuroreport 19(11), 1095-1099. https://doi.org/10.1097/WNR.0b013e328303fd85
  32. Krutetskii, V. A. (1976). The psychology of mathematical abilities in schoolchildren, Chicago: University of Chicago Press.
  33. Lee, K., Lim, Z.Y., Yeong, S., Ng, S.F., Venkatraman, V., & Chee, M. (2007). Strategic differences in algebraic problem solving: Neuroanatomical correlates, Brain Research 1155(June), 163-171. https://doi.org/10.1016/j.brainres.2007.04.040
  34. Maguire, E., Woollett, K., & Spiers, H. (2006). London Taxi drivers and bus drivers: a structural MRI and neuropsychological analysis, Hippocampus 16(12), 1091-1101. https://doi.org/10.1002/hipo.20233
  35. McGee, M. (1979). Human spatial abi1ities: Psychometric studies and environmental, genetic, hormonal, and neurological Influences, Psychological Bulletin 86(5), 889-918. https://doi.org/10.1037/0033-2909.86.5.889
  36. Mc Neil, N.M. & Jarvin, L. (2007). When theories don't add up: Disentangling the manipulatives debate, Theory into Practice 46(4), 309-316. https://doi.org/10.1080/00405840701593899
  37. Michelli, A., Crinion, J., Noppeney, U., O'Doherty, J., Ashburner, J., Frackowiak, R., & Price, C. (2004). Structural plasticity in the bilingual brain, Nature 431(October).
  38. Mohler, J.L. (1997). An instructional method for the AutoCAD modelling environment, Engineering Design Graphics Journal 61(1), 5-13.
  39. Newman, S.D.& Just, M.A. (2005). The neural bases of intelligence: a per-spective based on functional neuroimaging. In J. Sternberg & J. Pretz (Eds.), Cognition and Intelligence: Identifying the Mechanisms of the Mind (88-103). New York: Cambridge University Press.
  40. Paivio, A. (1991). Dual coding theory: Retrospect and current status. Canadian Journal of Psychology/ Revue canadienne de psychologie 45(3), 255-287. https://doi.org/10.1037/h0084295
  41. Pauli, P., Lutzenberger, W., Rau, H., Birbaumer, N., Rickard, T.C., Yaroush, R.A., & Bourne, L.E. Jr. (1994). Brain potentials during mental arithmetic: Effects of extensive practice and problem difficulty. Brain Research, Cognitive Brain Research 2, 21-29. https://doi.org/10.1016/0926-6410(94)90017-5
  42. Prabhakaran, V., Rypma, B., Gabrieli, J. (2001). Neural substrates of mathematical reasoning: an fMRI study of neocortical activation during performance of a necessary mathematics operations test, Neuropsychology 15(1), 115-127. https://doi.org/10.1037/0894-4105.15.1.115
  43. Qin, Y., Carter, C.S., Silk, E., Stenger, V.A., Fissell, K., Goode, A. & Anderson, J.R. (2004). The change of the brain activation patterns as children learn algebra equation solving, Proceedings of National Academy of Sciences 101(15), 5686-5691.
  44. Rasmussen, C., & Bisanz, J. (2005). Representation and working memory in early arithmetic, Journal of Experimental Child Psychology 91, 137-157. https://doi.org/10.1016/j.jecp.2005.01.004
  45. Rittle-Johnson, B. & Aliblai, M.W. (1999). Conceptual and procedural knowledge in learning mathematics: Does one lead to another? Journal of educational Psychology 91(1), 175-189. https://doi.org/10.1037/0022-0663.91.1.175
  46. Rivera, S.M., Reiss, A.L., Eckert, M.A., & Menon, V. (2005). Developmental changes in mental arithmetic: Evidence for increased specialization in the left inferior parietal cortex, Cerebral Cortex 15(11), 1779-1790. https://doi.org/10.1093/cercor/bhi055
  47. Rubinsten O. & Henik A. (2009). Developmental dyscalculia: heterogeneity might not mean different mechanisms, Trends in Cognitive. Science 13(2), 92-99.
  48. Schroeder, B. (2011). Investigating a metacognitive strategy for solving indefinite integration problems in Calculus, thesis, University of Connecticut.
  49. Schwanenflugel, P.J. (1991). Why are abstract concepts hard to understand? In P.J. Schwanenflugel (Ed.), The psychology of word meanings (235-250). Hillsdale: Erlbaum.
  50. Simon, T.J. (1999). The foundations of numerical thinking in a brain without numbers, Trends in Cognitive Sciences 3(10), 363-365. https://doi.org/10.1016/S1364-6613(99)01383-2
  51. Sohn, M.H., Goode, A., Koedinger, K.R., Stenger, V.A., Fissell, K., & Carter, C.S.. (2004). Behavioral equivalence, but not neural equivalence-neural evidence of alternative strategies in mathematical thinking, Nature Neuroscience 7(11), 1193-1194. https://doi.org/10.1038/nn1337
  52. Squire, L.R. (1994). Declarative and non-declarative memory: Multiple brain systems supporing learning and memory. In D.L. Schacter & E. Tulving (Eds.), Memory Systems (203-231). Cambridge: MIT Press.
  53. Tall, D.O. (1998). Symbols and the Bifurcation between Procedural and Conceptual Thinking, Plenary presentation at the International Conference on the Teaching of Mathematics, Samos.
  54. Tang, Y., Zhang, W., Chen, K., Feng, S., Ti, Y., Shen, T. Reiman, E., & Liu, Y. (2006). Arithemetic Processing in the brain shaped by cultures, PNAS 103(28), 10775-10780. https://doi.org/10.1073/pnas.0604416103
  55. Terao, A., Koedinger, K.R., Sohn, M.H., Qin, Y., Anderson, J.R., Carter, C.S., (2004). An fMRI study of the interplay of symbolic and visuo-spatial systems in mathematical reasoning, Proceedings of the Twenty-sixth Annual Conference of the Cognitive Science Society. Mahwah: Erlbaum.
  56. Thomas, M., Wilson, A., Corballis, M., Lim, V., & Yoon, C. (2010). Evidence from cognitive neuroscience for the role of graphical and algebraic representations in understanding function, ZDM Mathematics Education 42(6), 607-619. https://doi.org/10.1007/s11858-010-0272-7
  57. Thompson-Schill, S.L., D'Esposito, M., Aguirre, G.K., & Farah, M.J. (1997). Role of left prefrontal cortex in retrieval of semantic knowledge: A re-evaluation, Proceedings of the National Academy of Science 94(26), 14792-14797.
  58. Tulving, E. (1983). Elements of Episodic Memory, Oxford: Oxford University Press.
  59. van Nes, F. & De Lange, J. (2007). Mathematics Education and Neuroscience: Relating spatial structures for the development of spatial sense and number sense, The Montana Council of Teachers of Mathematics 4(2), 210-229.
  60. Varma, S., McCallin, B, & Schwartz, D. (2008). Scientific and pragmatic challenges for bridging education and neuroscience, Educational Researcher 37(3), 140-152. https://doi.org/10.3102/0013189X08317687
  61. Wynn, K. (1992). Addition and subtraction by human infant, Nature 358(6389), 749-750 https://doi.org/10.1038/358749a0
  62. Wright, R. Thompson, W., Gains, G., Newcombe, N. & Kosslyn, S. (2008). Training generalized skills, Psychonomic Bulletin & Review 15(4), 763-771. https://doi.org/10.3758/PBR.15.4.763
  63. Zago, L., Pesenti, M., Mellet, E., Crivello, F., Mazoyer, B., & Tzourio-Mazoyer, N. (2001). Neural correlates of simple and complex mental calculation, Neuroimage 13(2), 314-327.
  64. Zhu, Z. (2007). Gender differences in mathematical problem solving patterens: A review of literature, International Educational Joural Education 8(2), 187-203.

Cited by

  1. Expected problems for storytelling mathematics education and some suggestions vol.52, pp.4, 2013, https://doi.org/10.7468/mathedu.2013.52.4.497
  2. 수학적 사고력에 관한 인지신경학적 연구 개관 vol.27, pp.2, 2013, https://doi.org/10.19066/cogsci.2016.27.2.001
  3. Relative Spectral Power Analysis of EEG Activity during Actions Involving Number Sense and Spatial Ability vol.29, pp.4, 2019, https://doi.org/10.29275/jerm.2019.11.29.4.805