• Title/Summary/Keyword: floating point multiplier

Search Result 24, Processing Time 0.028 seconds

Design of the floating point multiplier performing IEEE rounding and addition in parallel (IEEE 반올림과 덧셈을 동시에 수행하는 부동 소수점 곱셈 연산기 설계)

  • 박우찬;정철호
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.11
    • /
    • pp.47-55
    • /
    • 1997
  • In general, processing flow of the conventional floating-point multiplication consists of either multiplication, addition, normalization, and rounding stage of the conventional floating-point multiplier requries a high speed adder for increment, increasing the overall execution time and occuping a large amount of chip area. A floating-point multiplier performing addition and IEEE rounding in parallel is designed by using the carry select addder used in the addition stage and optimizing the operational flow based on the charcteristics of floating point multiplication operation. A hardware model for the floating point multiplier is proposed and its operational model is algebraically analyzed in this paper. The proposed floating point multiplier does not require and additional execution time nor any high spped adder for rounding operation. Thus, performance improvement and cost-effective design can be achieved by this suggested approach.

  • PDF

A Design of 24-bit Floating Point MAC Unit for Transformation of 3D Graphics (3차원 그래픽의 트랜스포메이션을 위한 24-bit 부동 소수점 MAC 연산기의 설계)

  • Lee, Jungwoo;Kim, Woojin;Kim, Kichul
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • This paper proposes a 24-bit floating point multiply and accumulate(MAC) unit that can be used in geometry transformation process in 3D graphics. The MAC unit is composed of floating point multiplier and floating point accumulator. When separate multiplier and accumulator are used, matrix calculation, used in the transformation process, can't use continuous accumulation values. In the proposed MAC unit the accumulator can get continuous input from the multiplier and the calculation time is reduced. The MAC unit uses about 4,300 gates and can be operated at 150 MHz frequency.

  • PDF

Design of a Floating Point Multiplier for IEEE 754 Single-Precision Operations (IEEE 754 단정도 부동 소수점 연산용 곱셈기 설계)

  • Lee, Ju-Hun;Chung, Tae-Sang
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.778-780
    • /
    • 1999
  • Arithmetic unit speed depends strongly on the algorithms employed to realize the basic arithmetic operations.(add, subtract multiply, and divide) and on the logic design. Recent advances in VLSI have increased the feasibility of hardware implementation of floating point arithmetic units and microprocessors require a powerful floating-point processing unit as a standard option. This paper describes the design of floating-point multiplier for IEEE 754-1985 Single-Precision operation. Booth encoding algorithm method to reduce partial products and a Wallace tree of 4-2 CSA is adopted in fraction multiplication part to generate the $32{\times}32$ single-precision product. New scheme of rounding and sticky-bit generation is adopted to reduce area and timing. Also there is a true sign generator in this design. This multiplier have been implemented in a ALTERA FLEX EPF10K70RC240-4.

  • PDF

Power Operation Accelerator to speed up lighting in 3D graphics

  • Young-Su Kwon;In-
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.1129-1132
    • /
    • 1998
  • This paper presents a design of special hardware developed for enhancing the floating-point power operations which are actively used at the lighting stage to calculate the specular term in 3D graphics geometry engines. The power operation takes just 4 cycles in our floating-point multiplier while it takes about 100-200 cycles in conventional floating-point units. Although an approximation algorithm is employed in the power operation to reduce the hardware complexity required, the error of power value from the developed floatingpoint multiplier is so minimal that no difference can be found by human eyes.

  • PDF

Design of Fast Parallel Floating-Point Multiplier using Partial Product Re-arrangement Technique (효율적인 부분곱의 재배치를 통한 고속 병렬 Floating-Point 고속연산기의 설계)

  • 김동순;김도경;이성철;김진태;최종찬
    • Proceedings of the IEEK Conference
    • /
    • 2001.06e
    • /
    • pp.47-50
    • /
    • 2001
  • Nowadays ARM7 core is used in many fields such as PDA systems because of the low power and low cost. It is a general-purpose processor, designed for both efficient digital signal processing and controller operations. But the advent of the wireless communication creates a need for high computational performance for signal processing. And then This paper has been designed a floating-point multiplier compatible to IEEE-754 single precision format for ARMTTDMI performance improvement.

  • PDF

Goldschmidt's Double Precision Floating Point Reciprocal Computation using 32 bit multiplier (32 비트 곱셈기를 사용한 골드스미트 배정도실수 역수 계산기)

  • Cho, Gyeong-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.3093-3099
    • /
    • 2014
  • Modern graphic processors, multimedia processors and audio processors mostly use floating-point number. Meanwhile, high-level language such as C and Java uses both single-precision and double precision floating-point number. In this paper, an algorithm which computes the reciprocal of double precision floating-point number using a 32 bit multiplier is proposed. It divides the mantissa of double precision floating-point number to upper part and lower part, and calculates the reciprocal of the upper part with Goldschmidt's algorithm, and computes the reciprocal of double precision floating-point number with calculated upper part reciprocal as the initial value is proposed. Since the number of multiplications performed by the proposed algorithm is dependent on the mantissa of floating-point number, the average number of multiplications per an operation is derived from some reciprocal tables with varying sizes.

Newton-Raphson's Double Precision Reciprocal Using 32 bit multiplier (32 비트 곱셈기를 사용한 뉴톤-랍손 배정도실수 역수 계산기)

  • Cho, Gyeong-Yeon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.6
    • /
    • pp.31-37
    • /
    • 2013
  • Modern graphic processors, multimedia processors and audio processors mostly use floating-point number. High-level language such as C and Java use both single precision and double precision floating-point number. In this paper, an algorithm which computes the reciprocal of double precision floating-point number using a 32 bit multiplier is proposed. It divides the mantissa of double precision floating-point number to upper part and lower part, and calculates the reciprocal of the upper part with Newton-Raphson algorithm. And it computes the reciprocal of double precision floating-point number with calculated upper part reciprocal as the initial value. Since the number of multiplications performed by the proposed algorithm is dependent on the mantissa of floating-point number, the average number of multiplications per an operation is derived from some reciprocal tables with varying sizes.

A design of floating-point multiplier for superscalar microprocessor (수퍼스칼라 마이크로프로세서용 부동 소수점 승산기의 설계)

  • 최병윤;이문기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.5
    • /
    • pp.1332-1344
    • /
    • 1996
  • This paper presents a pipelined floating point multiplier(FMUL) for superscalar microprocessors that conbines radix-16 recoding scheme based on signed-digit(SD) number system and new rouding and normalization scheme. The new rounding and normalization scheme enable the FMUL to compute sticky bit in parallel with multiple operation and elminate timing delay due to post-normalization. By expoliting SD radix-16 recoding scheme, we can achieves further reduction of silicon area and computation time. The FMUL can execute signle-precision or double-precision floating-point multiply operation through three-stage pipelined datapath and support IEEE standard 754. The algorithm andstructure of the designed multiplier have been successfully verified through Verilog HOL modeling and simulation.

  • PDF

Design of 32-bit Floating Point Multiplier for FPGA (FPGA를 위한 32비트 부동소수점 곱셈기 설계)

  • Xuhao Zhang;Dae-Ik Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.2
    • /
    • pp.409-416
    • /
    • 2024
  • With the expansion of floating-point operation requirements for fast high-speed data signal processing and logic operations, the speed of the floating-point operation unit is the key to affect system operation. This paper studies the performance characteristics of different floating-point multiplier schemes, completes partial product compression in the form of carry and sum, and then uses a carry look-ahead adder to obtain the result. Intel Quartus II CAD tool is used for describing Verilog HDL and evaluating performance results of the floating point multipliers. Floating point multipliers are analyzed and compared based on area, speed, and power consumption. The FMAX of modified Booth encoding with Wallace tree is 33.96 Mhz, which is 2.04 times faster than the booth encoding, 1.62 times faster than the modified booth encoding, 1.04 times faster than the booth encoding with wallace tree. Furthermore, compared to modified booth encoding, the area of modified booth encoding with wallace tree is reduced by 24.88%, and power consumption of that is reduced by 2.5%.

Architectural Design for Hardware Implementations of Parallelized Floating-point Rounding Algorithm (부동소수점 라운딩 병렬화 알고리즘의 하드웨어 구현을 위한 구조 설계)

  • 이원희;강준우
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.1025-1028
    • /
    • 1998
  • Hardware to implement the parallelized Floating-point rounding algorithm is described. For parallelized additions, we propose an addition module which has carry selection logic to generate two results accoring to the input valuse. A multiplication module for parallelized multiplications is also proposed to generate Sum and Carry bits as intermediate results. Since these modules process data in IEEE standard Floatingpoint double precision format, they are designed for 53-bit significands including hidden bits. Multiplication module is designed with a Booth multiplier and an array multiplier.

  • PDF