1998 F FF KBET I8 KFTHLEMAE % L% $£208 ¥28 98/11

Power Operation Accelerator to speed up lighting in 3D Graphics

Young-Su Kwon, In-Cheol Park, and Chong-Min Kyung

Dept. of EE, KAIST,
Kusong-dong, Yousong-gu, Taejon 305-701, Korea
Tel : +82-42-869-3461

e-mail : {yskwon,icpark kyung}@duo.kaist.ac.kr

Abstract—This paper presents a design of special hard-
ware developed for enhancing the floating-point power
operations which are actively used at the lighting stage
to calculate the specular term in 3D graphics geometry
engines. The power operation takes just 4 cycles in our
floating-point multiplier while it takes about 100-200
cycles in conventional floating-point units. Although
an approximation algorithm is employed in the power
operation to reduce the hardware complexity required,
the error of power value from the developed floating-
point multiplier is so minimal that no difference can be
found by human eyes.

I. INTRODUCTION

High speed Hoating-point(FP) units are essential for 3D
graphics geometry engines because a large number of FP
calculations arc needed to obtain high quality images. There-
fore, hardware accelerators for 3D graphics algorithms have
been actively researched [13[2][3][6].

The 3D graphics pipeline begins with scene modeling
and geometry stages which are floating-point intensive, and
ends with integer-intensive rendering. The geometry stage
performs transformation, clipping, and lighting which are
based an FP operations for each polygon and thus it needs
increasingly more FP calculation capability as the number
of polygons increases. The geometry stage is supported
by CPU’s such ag Péntium, while the rendering is done by
graphics cards which have 3 accelerators such as Voodoo,
RIVA, and ete. Because the rendering requires a lot of pixel
operations, the graphiecs cards listed above are so highly
adapted for the rendering that the performance is over 60-
80M pixel/s. Since CPU’s or media processors responsible
for geometry engine cannot keep the pace with these cards,
geometry engines can be the bottleneck that slows down
overall 3D graphics performance. The 3DNow! technology
is an example of technology employed in general-purpose
processors to alleviate the geometry engine bottleneck[4].

The most frequent operation in transformation and clip-
ping is 4 x 4 matrix multiplication used to translate or
rotate images. For the matrix multiplication requiring 4
multiplications and 3 additions, there have been many re-
searches devoted to the fast calculation [1](5]. As an exam-
ple, a scheme that executes a FP multiplication and a FP
addition in parallel is used in [1].

Assuming one vertex per one polygon, Fig. 1 shows the
number of operations required for one polygon to do trans-
formatien, clipping, lighting and projection if we use only
FP add, FP mu!, and FP compare instructions. The power,
divide or square root operations needed to calculate light-

ing values were implemented in software using FP add, FP
sub, and FP compare instructions. The operation count
used in lighting is over a half of the total number of oper-
ations performed in the geometry engine.

wn

Chmpre.
1 Mianten @y

s |

Fig. 1. Operation count in geometry stages.

In the lighting stage, the color value of every vertex
should be computed for each light source. Each color com-
ponent of a vertex is calculated by Phong illumination
mode] [7} shown in Eq. 1.

Iy = faAknOu,\-FZ fortoIn, [kaOar (N o Lotk 0,5 (B V)P,
:
(1)

where I, is the light intensity for one of three color indices :
R,G,or B. k,04 and O, are a reflection coeflicient, a diffuse
color and a specular color, respectively. N is the normal
vector of the current vertex and I; is the i-th light source’s
vector from the current vertex. I is the reflected light's
vector and V is the viewer’s vector. These vectors are all
normalized.

In Eq.1, the first termn means an ambient celor which
models intrinsic intensity and the second term is a diffuse
color which exhibits the brightness of an object. The third
term is a specular color which exhibits the shininess of the
object. The shininess is dependent on the angle, a, between
the reflected light vector K and the viewer’s vector ¥, that
is the inner product & « V. Phong illumination model as-
sumes that maximum specular reflectance occurs when the
angle o is zero and falls off sharply as o increases. This
rapid falloff is approximated by (R e V)%= = {cos)%,
where Sy, is the material’s specular reflection ezponent.
This effect is shown in Fig. 2.

The specular reflection requires the power operation of
two FP numbers as well as the normalization of vectors.
The power operation can be calculated by using the ma-
chine instructions provided that the power operation is sup-
ported in the machine as instructions or by using a soft-
ware mathematical library. In AMD or Pentium, there

- 1129 -

LB EHE ABRET LEE KEHESEMXE

WXOE OENE B2 W

O

Fig. 2. (cos a)® used in the Phong illumination model.

are two instructions which calculate logoz and 27 where
z 15 a FP number. With these instructions, (cos a)5m
can be computed as in Eq. 2, and it takes about 150 cy-
cles. Since it must be computed for (vertex number) x
(t of light sources) times, the number of cycles consumed
for the operation is huge.

COSS"’"Q — 2.5‘,.,.,, xlog{cos a) (2)
Eq. 2 can be computed using a software algorithm which
uses normal integer and bit-operation instructions. pow{a,b)
function of SPARC takes about 140 cycles.

This paper describes a special hardware that computes
the power operation of two FP numbers in 4 cycles with
small loss of accuracy. The hardware can be easily imple-
mented by expanding a conventional floating-point multi-
plier. This paper i¢ organized as follows. In section II, the
approximation algorithm will be presented and the hard-
ware implementation will be shown. In scction III, the
measurement of the runtime used in the lighting will be
compared. The loss of accuracy caused by our approxima-
tion algorithm is so small that human eyes cannot find any
differenices between the image generated by SPARC and
the other one by the proposed approximation algorithm.

II. APPROXIMATION OF POWER OPERATION

As in Eq. 2, {cos @)~ can be computed by the loga-
rithm and exponential operations. We have used a piece-
wise linear approximation for the loga{cos a) [8].

log (cos o) (3)

=log:(2¥(1+ 1)) (N :ezponent, 1+ z: mantissa)
N+ 1.25z 0<z <025

=d Niz+00625 025<z <075 (4)

N+07524025 073<2z<1.0

where N is an unbiased integer exponent of cos «, and
r 15 the fractional part that does not include the hidden
Lit. In cther words, x represents the lower 23 bits in a
single-precision FP number as shown in Fig. 3.

The addends in Eq.4 are easily generated: 1.25z = z +
(z »>>2) and 0.75¢ = = — (z >> 2). It i3 quite simple to
determine whether z < 0.25,0.25 <z < 0.75, or x > 0.75.
If £’s 2 MSB's are “11", x is greater than or equal to 0.75.
If 2's 2 MSB’s are “10” or “01", x is between 0.25 and
0.75. Otherwise, z is less than 0.25. A circuit for finding
the range of r is shown in Fig. 4.

o

mantissa

Fig. 3. *N" and “z” fields in o5 o

x>0,75 0.75>x>0.25 x<0.25

Fig. 4. Determination of the range of z.

As an example, let us consider the case of ¥ < 0.25.
Its approximated log(cos @) can be calculated as in Eq.
5. Since cos o is between 0 and 1, its exponent is always
smaller than the bias, and the sign of the approximated
value is negative.

N+12z = Ni+z+(z>>2)
—{((bias — exponent) —z — (2 >>2))

—{ (bias — (exponent + z)) — (z >> 2))

it

I

f

The other cases when 0.25 < = < 0.75 and z > 0.75
can be formulated similarly, and the resulting equations
for logz(cos o) are summarized in Eq. 6.

logy(cos a)

—((bias +2)+ (cos)+ {z>>2))
for 0<z <025

—{ (bias + 1 — 0x0D200000} + ~(cos «))
for 025 <z <075

iR

—((bias + 1 — 0x0D0R0O000) + ~(cos) + (z >> 2))

for 075<z<10

In Eq. 6, three 32 bit additions are required. It can be
implemented by a CSA{carry save adder) and one 32 bit
carry select adder. The CSA accepts three operands and
generates a carry and a sum. The final 32 bit adder adds
the carry and the sum and generates a final 32 bit result.
A hardware implementation for the log approximation unit
is shown in Fig. 5, where “const” means the constant in
Eq. 6.

S

Svrry eaiees daive]

Fig. 5. Log approximation unit.

The output of the log approximation unit is a 32 bit fixed
point number and it is shifted by 7 bits to make a 24 bit

- 1130 -

—{{bas+ "(cosa) + 1)+ {z>>2)+1)
= —((bias+2)+ “(cos a) + (2 >>2)) (3)

(&

Power Operation Accelerator to speed up lighting in 3D Graphics

fixed point number. Sy, is saved in a special register as a
fixed point number whose binary point is at the 16th bit.
Upper 8 bits are an integer part and lower 16 bits are a frac-
tional part. The approximated log{cos o) and S, is mul-
tiplied by the 24-bit multiplier in the FP multiplier unit.
When this multiplier is used for the FP multiplication, it
multiplies mantissas of two operands, but when used for
log approximation it multiplies two fixed point numbers.
The 24-bit mmltiplier is composed of 2 stages. The first
stage is a CSA tree which has a Booth encoded Wallace
tree structure and the second is a carry select adder which
adds the sum and the carry generated by the CSA tree.
After the multiplication, the result is shifted by 9 bits to
generate a 23 bit mantissa. If the integer part of the result
is over 8 bit, an overflow occurs, the result becomes the
maximum number which the result can represent.
The approximation equation for 2% is shown in Eq. 7.

Fem xlogleos a) . g-n—y

=27 (H0FI=Y (s integer, 0 < {1 — y) < 1)

227000+) O<n<ly=Q1-g) (0
Because n+ 1 is an unbiased exponent, it is required to add
the hias to the integer part to generate a FP number. Using
the 24 x 24 multiplier in the FP multiplier unit, the circuitry
for log approximation and exponential approximation can
be merged into the FP multiplier. A block diagram of the
merged FP multiplier is shown in Fig. 6, which is called
“Fastpow” unit.

eXD Apprax.--——_

Fig. 6. Floating Point multiplier with “Fastpow” unit.

As (cos) increases, {cos a)® ™ increases monotonousky.
If the proposed approximation equation doesn’t monotonously
increase as cos « increases, the image using this approxi-
mation equation can be looked as significantly different. A
brighter point in the original image can be seen as a darker
point compared to the neighbour peints. The monotonous
increase of the approximation equation 4 and 7 used in
“Fastpow™ unit can be easily proved. Therefore, the image

is almost the same as the original image if the error is not
50 large.

111. RESULTS

To prove the importance of the lighting stage in 3D
graphics geometry engine, we measured the runtime taken
by the lighting stage for several applications that draw sim-

- 113

ple 3D objects having specular reflection. The runtime per-
centage of the lighting stage in a geometry engine is shown
in Fig. 7. About 30% of total runtime is consumed in the
lighting stage.

Fig. 7. The runtime percentage of the lighting stage in geome-
try stage.

Fig. 8 shows the type of operations used in the lighting
stage, which was measured using an openGL compatible
library. Although the operation count of paower operation

1

[e St t

Fig. 8. Operation count and cycle count required in the lighting
in the case of TI's TMS320C67x.

and square root operation is relatively small compared to
that of addition or multiplication, the cycle count of power
and square root operations is larger than that of addition
or multiplication.

The method to calculate the specular term can be clas-
sified as follows.

« Instructions to compute log, exponential operation.

« Software implementation.)

+ Table lookup method.

If instructions are used, ahout 160 cycles are used for logax
and 2% instructions in Pentium or AMD’s K6. If a software
algorithin is used, about 140 cycles are required in SPARC
and over 200 cycles are required in TI's TMS320067x.
With a table lookup method, about 512 values of cos o are
required and the differences of adjacent cos a values are
saved in the tables for interpolation. Besides an additional
memory to save the tables, the table must be updated at
any time a new object appears. Since large overheads are
inevitable in the specular term calculation, applications
that need fast scene update such as 3D games have not
used the specular reflection.

Qur “Fastpow” unit takes just 4 cycles to compute the
power of FP numbers. Therefore, the specular term calcu-
lation is very fast compared to the other methods. The
hardware overhead is 32 CSA’s, one 32-bit carry select

1 -

9 FH ABEFTEH KEHFOSPMAM L E F2E 82H 981

adder and one 8-bit adder. The cycle counts of “Fast-
pow” unit for the various operations are compared to the
other processors in Fig. 9. Our FP unit uses Newton-
Raphson method to compute sqrt or divide operations like
TYs TMS320C67x. Therefore, the cycle count of our FP
unit for the square root or divide operation is almost the
same as the TI's TMS320C67x. Two FP instructions were
used to compute the power operation for Pentium and a

software mathematical library was used for TT's TMS320C67x.

For the power operation, the cycle count required in “Fast-
pow” umit is roughly reduced to 1/40 of the others.

Fig. 9. Cycle count of FP units to compute various operations.

Fig. 10 compares the power value generated by the pow()
function of SPARC and the value from the “Fastpow” unit
for S;m = 10.16 and 5., = 80.01. The approximated vatue
is very similar to the value generated by SPARC's pow(}.
The range of Y-axis is 0 to 1 because cos a's value is be-
tween 0 and 1. In our measurement, the mean absolute er-
rar between the SPARC's value and the “Fastpow”’s value
was 0.000018 and the distribution of error was 0.000158.

pomis 50

(b) Spm=80.01

Srm

Fig. 10. cos a value generated by SPARC and “Fastpow”.

To inspect the effect of error, we have used our algorithm
instead of the pow() function in 3D APIL The resulting

4

image is compared in Fig. 11 ‘Image (a) does not use the
specular term and thus the ﬁighlight does not appear in
the upper right corner. Image (b) uses the specular term
whose power value is calculated by the SPARC’s pow()
function. Image (c} uses our approximation algorithm of
the Fastpow. As shown in the figure, image (b) and {c)
don™ show any difference.

{a) Without (b} With (<) With
specular specular specular
term. term using term using
SPARC’s fastpow.
pow().
Fig. 11. Image with different method of specular calculation.

IV. CoNcCLUsION

In this paper, we proposed the “Fastpow” unit which ac-
celerates the calculation of the lighting value in 3D graph-
ics. “Fastpow™unit calculates the power value of two floating-
point numbers in 4 cycles with small loss of accuracy while
it takes over 150 cycles in other processors. “Fastpow” is
easily merged into a conventional floating-point multiplier
and its hardware overhead is only a 32-bit CSA, one 32-
bit adder and one &-bit adder. We have also shown that
the error is 50 small that there is almost no difference be-
tween two images generated by using the SPARC’s pow()
function and “Fastpow™ unit, respectively.

REFERENCES

[1] ©O. Nishii et al., “A 200MHz 1.2W [.{GFLOPS Microproces-
sor with Graphics Operation Unit,” ISSCC Digest of Technicol
Papers, Feb, 1997, pp. 402-403.

Hiroshi Makino et al,, “A 296 MHz 64-b Floating Point Multiplier

with Enhonced C(F operation,” IEEE J. Solid-Stote Circuils, Apr.

1996, pp. 504-512

J. Shipnes, “Graphkics processing with the 88110 RISC micro-

processor,” in Dig. of Papers, IEEE Proc. COMPCON, ‘92, pp.

169-174.

“8liNow! Technology, Delivering Leading-Edge 3D Graphics and

Multimedia Performance for the New Era of Realistic Comput-

ing,” Advanced Micro Devices, INC., May 1998.

{5] J. Grimes, “The Intel i860 64-bit Processor:A General-Purpose
CPIU with 3D Graphics Capobilities,” IEEE Computer Graphics
and Applications, Vol. 9, No .4, Jyly 1989, pp.85-94.

[6] J. H. Clark, “The Geometry Engine: A VLSI Geometry System
Jor Graphics,” Computer Graphics(Proc. Siggraph), Vol. 16, No.
3, July 1982, pp.127-133.

17) Bui-Tuong, Phong, “Illumination for Computer Generated Pic-
tures,” CACM, 18(6), June 1975, 311.317.

(8] M. Combet, H. Van Zonneveld, and L. Verbeek, “Computation
of the Base Two Logarithm of Binary Numbers,” IEEE Trans.
Electron. Comput.,, June 1975, 863-867.

N

[3

[4

- 1132 -

