Joumal of the KIECS. pp. 409-416, vol. 19, no. 2, Apr. 30. 2024, t. 124, pISSN 1975-8170 | elSSN 2288-2189
R | htip:/ /. doi.org/10,13067/JKIECS.2024.19.2.40

= 0O]& = 37
FPGAE 913 32HIE Fsagi H47] 27
Xuhao Zhang - Zthe]”
Design of 32-bit Floating Point Multiplier for FPGA

Xuhao Zhang - Dae-Tk Kim~

wE 314 vlolE Ae Az B =g kS A FE AFF i a7 Abgro] g wet BE A5
AN A Y] Eie Al2" A S WA A st B =RdAe gdd Feasd w8
2ol As 5AS Asta, Aok 3o FHE B8 3 45 v, AF A9E 471 99 Al nE 1Y)
P15 AHEgt) Intel Quartus II CAD & ol-83te] Verilog HDLE F-5453 #4715 7IEstal As
B7HE aleh AAE BEeasd wAVIe W, S5 9 A vl dis) 24 3 vusigich defs Ed
E Abge 4 B sy WAl FMAXE 3396Mhz2 F-2 Qlagreh 204u), 24 B dsgrc) 162
v, g EglE AREEE B Qs Rt 1048 whac) 3 g s Qlmdel Wla) dels ERE o] 83

At

4 R Qlmy) o) WAHE 24880 Ay, AHLRE 25% 1Ads)

ABSTRACT

With the expansion of floating—point operation requirements for fast high-speed data signal processing and logic
operations, the speed of the floating—point operation unit is the key to affect system operation. This paper studies the
performance characteristics of different floating—point multiplier schemes, completes partial product compression in the
form of carry and sum, and then uses a carry look-ahead adder to obtain the result. Intel Quartus II CAD tool is used
for describing Verilog HDL and evaluating performance results of the floating point multipliers. Floating point multipliers
are analyzed and compared based on area, speed, and power consumption. The FMAX of modified Booth encoding with
Wallace tree is 33.96 Mhz, which is 2.04 times faster than the booth encoding, 1.62 times faster than the modified booth
encoding, 1.04 times faster than the booth encoding with wallace tree. Furthermore, compared to modified booth encoding,
the area of modified booth encoding with wallace tree is reduced by 24.88%, and power consumption of that is reduced by
2.5%.

sl =
Floating Point Multiplier, Modified Booth Encoding, Wallace Tree, Carry Look-Ahead Adder, Fpga
5 AT FAAV, 4 F2 d3d, 9y B, AlE vE ®7] 7HE7], FPGA

« Mt stm MASAlZ et} * Received : Jan. 16, 2024, Revised : Feb. 28, 2024, Accepted : Feb. 12, 2024
(zhangxuh123@sina.com) + Corresponding Author : Dae-lk Kim

o WAKMXE: Mfetn MASAS st Dept. of Electronic Communication Engineering, Chonnam National University

= 202401, 16 Email : daeik@jnu.ac.kr

cEyetgd 2024 02. 28

CAMEEY 2024, 04. 12

409

JKIECS, vol. 19, no. 02, 409-416, 2024

| . Introduction

In digital signal processors (DSP), multipliers are
[1-3].
multipliers (FPM) have the characteristics of large

essential functional —units Floating—point
area, long delay, and complex structure. In order to
design a high-speed floating—point multiplier, based
on the floating—point operation process, in order to
reduce the number of partial products, speed up the
sum of partial products, and then improve the
operation speed of the multiplier, the delay, area,
structural complexity, etc. In this regard, each
process of the multiplication component has been
studied and fully studied and

compared [4]. Parallel multipliers are mainly used in

systematically

high-performance digital processors to complete
high-speed data operations. In the process of
in—depth
optimization strategies have emerged: reducing the
number of partial products through Booth algorithm

and compressing tree structures such as Wallace

research on multipliers, a series of

Tree and Dadda Tree to achieve parallel processing
of partial products; carry look-ahead adder (CLA,)
and carry save adder (CSA) realize the fast sum of
partial products of the final two rows. Among
them, the partial product compression unit is a key
factor that determines the speed, power, and area
of the multiplier [5].

To improve the efficiency of floating point
multipliers, many fast multiplication algorithms have
been proposed and modeled. This article designs a
32-bhit floating—point multiplier. When designing a
part of the
compression unit is a key factor in determining the

floating—point multiplier, product
speed, power, and area of the multiplier. Some fast
multiplication schemes that may be considered for
Booth’s algorithm, Vedic

multiplication algorithm and array multipliers, Vedic

implementation — are

multipliers and Wallace tree multipliers for study

and comparison. Rounding is also given due

consideration when implementing the multiplier

410

design. Mainly research on modified booth and
wallace tree, and optimizing the design of the
compression unit of the mantissa operation part.
First, the system structure of the multiplier is
introduced, then the structure and logic circuit of
the compression unit are optimized and analyzed,
and simulation analysis is performed, and finally a
conclusion is drawn.

Il. Floating point multiplier

The multiplier and multiplicand input to the
multiplier designed in this article are both 32-bit
single—precision floating—point numbers: including
1-bit sign bit, and 23-hit
mantissa bit. The output floating point result is a

8-bit exponent bit,

40-bit extended precision floating point number:
1 sign bit, and 31
When performing a multiplication

including 8 exponent bits,
mantissa bits.
operation, first the multiplier and multiplicand
mantissas are expanded to 25 bits: including 1 sign
bit, 1 hidden bit, and 23 mantissa bits [6].

The mantissa digit of the product is obtained by
multiplying the multiplier and the mantissa digit of
the dividend and performing normalization and
rounding, as shown in equation (1), where Normal
is the exponent correction during the mantissa
normalization process, and the value of Normal. It
is equal to the value of the number of right shifts
when normalizing the mantissa (if the mantissa is
shifted right by 1 bit to normalize, then Norm a 1
= 1; if the mantissa is shifted right by 2 bits to
then Normal=2,
already a normalized number, then Normal=0). The

normalize, if the mantissa is
exponent clexp) of the product is equal to the sum
of the exponents of the two operands plus the
value of the exponent correction bit, as shown in
equation (2).

[c(man),Normal]=a(man)*b(man) (D)

FPGAE A% R2HE Fsiad w47] A7

clexp)=alexp)+b(exp)+Normal - (2)

The mantissa operation part determines the
speed of the entire multiplier. Booth coding is a
common algorithm for reducing the number of
partial products. Considering the delay, area and
complexity of the circuit, the multiplier designed in
this article adopts the modified Booth algorithm
[7]. First, the mantissas of the multiplier and the
multiplicand are modified by the Booth coding unit
and then the
Wallace tree composed of the compression units of

to generate 13 partial products,

the 3-2 and 4-2 compressors compresses these 13
partial products into Carry and Sum forms. , and
finally the product is normalized and rounded
during CLA summation, and the exponent of the
product is adjusted, as shown in Fig. 1.

a(man) b(man)

Multiply the mantissas

aexp)

Adding exponents
c(exp)y=a(exp)r+b(exp)

blexp)

c(man)=a(man)*b(man)

| Determine the mantissa situation]
| o(man y=0 Shift right one bit to normalize Shift rigt two places to normalize Do not shlfq

| | |
[ctexpr=-128

c(man)>>2
c(exp)=c(exp)+2

c(man)>>1
c(exp)=c(exp)+1

} }

[Mantissa rounding |

[c(man) expressed in extended floating point precision format]

I Determine the exponent situation

|L p! flow c(exp flow c(exp] overflow l

(man)>0, ¢ is set to the maximum positive valu c(man)=0
c(man) <0, ¢ is set to the smallest negative value| clexp)=-128

[Set the final result of c]

]

c=a*b

Fig. 1 Floating point multiplier operation flow chart

The flow chart of floating point operations is
1 (taking 32-bit floating point
operations as an example).

Step 1. Multiply the mantissa bits of the
operands, where the input data is 24 bits and the
output result is 48 bits;

given in Fig.

Step 2: The exponent part of the operands is
added, and the result is c(exp);

Step 3 Determine the mantissa situation. If it is
0, perform step 7 to set the exponent position of
the result to -128;

Steps 4 and 5 used to normalize the results;

If it is necessary to shift right by 1 bit for
normalization, perform step 8, shift the mantissa to
the right, and add 1 to the direct index. If it is
shift right by two digits for
normalization, perform step 9, shift the mantissa to

necessary to

the right by two digits, and add 2 to the exponent;
Step 10: Expand the
extended—precision floating—point format.

mantissa result to

Steps 6 to 11: Determine the exponent situation

If the exponent overflows, proceed to step 14. If
the mantissa is greater than 0, set the exponent to
the maximum positive number. If the mantissa is
less than 0, set the exponent to the minimum
negative number.

If the exponent underflows, execute step 15, set
the exponent to —128, and the mantissa is 0, if the
exponent is within the range. Then proceed to step
16 to obtain the final result.

For floating—point multipliers, the multiplication
algorithm and structure are the
The
floating—point multiplication —are:
partial product
addition and
Reduction and compression of partial products is

basis of its
main steps in
partial product
carry
rounding processing.

hardware implementation.

generation, compression,
propagation

the key to distinguishing various multiplication
algorithms. And according to existing papers, most
of the time, area, and power consumption are
consumed in mantissa multiplication. Therefore,
when designing, you need to choose an appropriate
speed, area,

algorithm based on delay, power,

complexity and other requirements.

411

JKIECS, vol. 19, no. 02, 409-416, 2024

[ll. Design of Floating Point Multiplier

The mantissa operation part consumes the most
resources and has the longest delay, and is the key
to the design of floating—point multipliers. The
includes three parts: Booth
coding to generate partial products, Wallace tree

mantissa operation

and CLA. The design of this key component is
introduced below.

3.1 Modified Booth encoding

Since Booth encoding does not improve the
operation speed of the multiplier, the two bits of
Booth
algorithm are extended to three bits of each overlap
check, that is the modified Booth algorithm. The

modified Booth algorithm encodes each time when

each overlap check multiplication in the

checking 3 bits, 2 bits are from the current group
and the 3rd bit is from the lowest bit of the higher
group. Effectively, the lowest hit of each group is
checked 2 times. This modified Booth algorithm can
ensure that the partial product is reduced by half,
speed and
This
multiplier generates partial products based on the
modified Booth algorithm. According to the above
formula (3), the value of the partial product can be

thereby increasing the computing

reducing the hardware complexity [8].

calculated. For the continuous three-digit data
obtained at one time, the lowest bit and the middle
bit represent 1, while the highest bit represents -2,
and the result is three bits. The sum of the
additions, so the possible results after encoding can
only be: {0, X, X, 2X, -2X}. Table 1 is the partial
product generation coding table of the modified
Booth algorithm :

n—2
V==Y, | 2" 'y e 24y,)
i=0

-2
2
2i
= E (y2¢71 t Yo — 2927:+1)2
i=0

412

Table 1. Modified Booth coding truth table

Yi—1 Yi Yit+1 b
0 0 0 0
0 0 1 +X
0 1 0 +X
0 1 1 +2X
1 0 0 -2X
1 0 1 -X
1 1 0 -X
1 1 1 0

For the partial product based on the modified
Booth coding 16-bit complement form, the dot
matrix diagram is shown in Fig. 2. The number of
partial products obtained using this encoding
method is approximately (n +1)/2. Adding 1 is
because it is necessary to ensure that the partial
product generated by the highest bit is positive,
otherwise it needs to be supplemented for
correction. The advantage of the modified Booth
algorithm is that it can compress the number of
partial products PPi to about 1/2 of the original,
and it has nothing to do with the value of the
multiplier. Therefore, the number of summations
required to complete the sum of partial products is
approximately 1/2 of the original number. This can
not only improve the operation speed in Floating
Point Multiplier, but also reduce the number of
adders required. However, it should be noted that
the operands in the modified Booth algorithm are
expressed in two's complement, and sign extension
is required during addition and subtraction
operations [9].

1111111111111 90000 5
00000000000]
ft1111111
111111

155

—
essecesesseec
Jsndnniy

f

{ o MSB

Fig. 2 Booth coded multiplier sign bit extension

FPGAE 9% RHE 5244 w417 A4

3.2 Wallace tree structure

The first step of the Wallace tree structure is to
group the partial multiplication integral of each
column into a 3-hit group. In order to reduce the
number of addends, each group uses a CSA
component composed of a full adder; the second
step, the results generated in the first step continue
to be grouped by 3 hits, and the pseudo-sum and
local carry signals of the same weight are processed
through the CSA component, thereby reducing the
number of addends again until there are only two
the third step, the final
pseudo-sum and the local carry are added through

outputs in the end;
the carry-pass adder to obtain the real result.

The number of operands in the above method is
reduced by 15 times, and the intermediate results
will be processed in this way until there are only
two outputs in the end.

There are two main structures for fast
compression of partial products: Wallace tree and
Dadda tree. The Wallace tree compresses as many
partial products as possible at each stage and is
mainly used to implement high-speed parallel
multiplier design [10]; the Dadda tree distributes
partial products at each stage for compression thus
balancing circuit delay and layout complexity[3].
The multiplier designed in this article uses the
Wallace tree structure to implement partial product
parallel compression. The depth of the compression
log,V

number of partial product rows.

tree is levels, where N represents the

T

(X]
[]

[]

J—
—N >

NIRN]

Fig. 3 Schematic diagram of Wallace tree connection
structure

T
[
1
r'Y
|

J— -

Fig. 3 is a schematic diagram of the Wallace
tree connection structure, in which each rectangle
represents a set of 4:2 compressors, and the line
segments with arrows represent partial products
and intermediate results to draw conclusions. The
Wallace tree structure is theoretically the fastest
adder tree for multiplication operations, but its
complex connections make layout implementation
difficult. Therefore, a 4:2 compressor is needed.
Using a 42
complexity and make the circuit structure regular
[11]. The Wallace tree has a large area but small
delay. In the Floating Point Multiplier design of

reducer can reduce the wiring

this article, the Wallace tree multiplier structure is
adopted in order to improve the operation speed.

To improve performance of the multipliers, 4:2
compressor logic is often designed. Fig. 4 is an
improved structure [12]. In this structure, the
delays from the four inputs to the output are equal,
which is convenient for layout and consumes less
power. This structure is used in the design, and its

logical expression is:

C=PBP,BP,BP+ (P« Py+P;+ P))

-~ (9

Copr=Py *« Py, + Py« P, (6
<
St

s

Fig. 4 4:2 Improved structure of compressor

Based on the above design, the circuit diagram
of the 32-hit floating point multiplier finally
designed in this article is shown in Fig. 5.

413

JKIECS, vol. 19, no. 02, 409-416, 2024

=

Fig. 5 The modified booth_tree circuit diagram designed in
this article

3.3. Carry look-ahead adder

The performance of the adder can be analyzed
from the aspects of delay, power consumption, area,
etc. The basic idea of improving the speed of the
adder is to speed up the generation and
transmission time of the carry signal by improving
the carry method [13]. The characteristic of the
carry look-ahead adder is that carry signals at all
levels are generated simultaneously. This parallel
approach greatly shortens the time for carry
generation. Fig. 6 is the logic diagram of a 4-hit

carry look—-ahead adder.

X n

£ P

Zo Yo
8o Po
T . & —co
€ ﬁ
5

52 5o

Fig. 6 4-bit carry look-ahead adder

IV. Simulation results and discussion

The floating point multiplier is designed by
Verilog HDL and verified and synthesized on Intel
Quartus II CAD tool. Te simulation results of the
designed floating point multiplier are shown in Fig.

414

7.

The 32-hit floating point multiplier has been
implemented in the Quartus II CAD tool as shown
in Figure 7. For inputs al = 32'h3f67elfb; bl =
32'h3e0208d5; a2 = 32'h3f78elfb; b2 = 32'h3e0299d5;
and the output obtained is c¢1=32"h3deb9182;
€2=32"h3dfdfo9f;

ffoat mut_thjck
ozt mult_tbfrst n
foat mult_thfa
[foat_mult_tbb
ffoat mult_thfen

[foat_mult_tbfc 32h3debd182
[[foat_mut_bjvald | tht

Fig. 7 32-bit floating point multiplier logic simulation results

Fig. 8
power consumption and area of the

shows performance results of speed,
designed
floating point multiplier using modified Booth
Wallace And the
performance comparison results are shown in Table
2. We 4-types of floating point
multipliers. And Booth means Booth encoding,
Modified Booth means Modified Booth encoding,
Booth Tree means Booth encoding using the
Wallace tree, and Modified_booth_tree
Modified Booth encoding using the Wallace tree,
respectively.

encoding with the tree.

implement

means

¢¥Q 0 ro B2 QP L0

Report - float_mult B f PowerPlay Power Analyzer Tool | L]
E
A Fmax Restricted Fmax ~ Clock Name Note

1 33.96MHz 33.96 MHz ck
3l Settings

FPGAE 9% RHE 5244 w417 A4

Flow Status Successful - Sun Oct 08 20:52:36 2023
Quartus TI 64-Bit Version 13.0.1 Build 232 06/12/2013 SP 1 5] Web Edition
Revision Name float_mult

Top-level Entity Name float_mult
Family Cyclone IV E
Device EP4CE115F2918L
Timing Models Final

Total logic elements
Total combinational functions
Dedicated logic registers

1,784 /114,480 (2%)
1,781/ 114,480 (2%)
97 /114,480 (< 1%)

Total registers 97
Total pins 100 /529 (19 %)
Taotal virtual pins a

Tatal memory bits
Embedded Multiplier 9-bit elements
Total PLLs

0/3,981,312(0%)
0/532(0%)
0/4(0%)

PowerPlay Power Analyzer Summary
PowerPlay Power Analyzer Status Successful - Sun Oct 08 20:52:36 2023
Quartus I 64-Bit Version 13.0.1 Build 232 06/12/2013 SP 1 5] Web Edition

Revision Name float_mult
Top-level Entity Name float_mult
Family Cyclone IV E
Device EP4CE115F2918L
Power Models Final

Total Thermal Power Dissipation 171.45 mW
Core Dynamic Thermal Power Dissipation 6.45 mW

93.99 mW
71.00 mW
Low: user provided insufficient toggle rate data

Core Static Thermal Power Dissipation
1/0 Thermal Power Dissipation
Power Estimation Confidence

Fig. 8 The results of area, speed, and power of the
designed floating point multiplier

From Table 2, modified booth encoding with
wallace tree is the best. It has a small area, low
power consumption and the fastest computing
speed. The FMAX of modified Booth encoding with
Wallace tree is 3396 Mhz, which is 2.04 times
faster than the booth encoding, 1.62 times faster
than the modified booth encoding, 1.04 times faster
than the booth tree.
Furthermore, compared to modified booth encoding,

encoding with wallace

the area of modified booth encoding with wallace
tree is reduced by 24.88%, and power consumption
of that is reduced by 2.5%.

Table 2. Comparison of implementation results of various
floating point multipliers

Performance £ | rEG FMAX | Power
metrics (Mhz) | (mW)
booth 2397 97 16.63 17152
modified_booth | 1736 97 21 170.02
booth_tree 2375 97 32.65 175.93
modified booth | 7o) 1 o7 | 3306 | 17145
_tree

V. Conclusion

In this paper, we design a 32-bit floating point
multiplier, uses the modified Booth encoding with
Wallace tree to partial
compression in the form of carry and sum, and

complete product
then uses a carry look-ahead adder to obtain the
final result. We compared different floating point
Booth modified Booth
encoding, Booth encoding with Wallace tree, and
modified Booth encoding with Wallace tree.
Simulation results from the FPGA CAD tool show
that the floating—point multiplier using modified
Booth encoding with the Wallace tree is the fastest,
and is expected to be widely used in high-speed

multipliers: encoding,

DSP applications.

References

[1] S. Kim, H. Seo, S. Kim, and D. Kim,
“Approximate Multiplier With Efficient 4-2

Compressor and Compensation Characteristic,”

J. of the Korea Institute of Electronic
Communication Sciences, vol. 17, no. 1, 2022,
pp. 173-180.

[2] H. Seo and D. Kim, “Approximate multiplier
with high density, low power and high speed

using efficient partial product reduction,” J. of

415

JKIECS, vol. 19, no. 02, 409-416, 2024

the Korea Institute of Electronic Communication
Sciences, vol. 17, no. 4, 2022, pp. 671-678.

[3] J. Kim and S. Lee, “High-Performance
Multiplier Using Modified Gate-Diffusion
Input (m-GDI) Compresso,” J. of the Korea
Institute of Electronic Communication Sciences,
vol. 18, no. 2, 2023, pp. 285-290.

[4] A. Akkas and M. J. Schulte, “A quadruple

dual double

floating-point multiplier,” In Proc. Euromicro.

precision and precision
Symp. on Digital System Design, Belek-Antalya,
Turkey, Sept. 2003, pp. 76-81.

[5] S. V. Siddamal, R. M. Banakar, and B. C.
Jinaga, “Design of High-Speed Floating Point
Multiplier,” In Proc. 4th IEEE Int. Symp. on
Electronic Design, Test and Applications (delta
2008), Hong Kong, China, Jan. 2008, pp.
285-289.

[6] IEEE Std. 754-1985, IEEE Standard for
Binary Floating—point Arithmetic. IEEE, New
York, NY, 1985.

[7] T. Krishnan and S. Saravanan,
Low-Area and High Speed Pipelined Single

“Design of

Precision Floating Point Multiplier,” In Proc.
2020 6th Int. Conf. (ICACCS). Comununications,
Coimbatore, India, Mar. 2020, pp. 1259-1264.

[8] Y. Guo, H. Sun, and S. Kimura, “Small-Area

FPGA-Based = Multipliers
using Approximate Elementary Modules,” In
Proc. 2020 25th Asia and South Pacific Design
Automation Conf. (ASP-DAC). Communications,
Beijing, China, 2020, pp. 599-604.

[9] X. Jiang, P. Xiao, M. Qiu, and G. Wang,
“Performance effects of pipeline architecture

and Low-Power

on an FPGA-based binary 32 floating point

multiplier,”] of Microprocessors and

Microsystems, vol. 37, no. 8, 2013, pp.
1183-1191.

[10] M. J. Rao and S. Dubey, “A high speed and
area efficient Booth recoded Wallace tree
multiplier for fast arithmetic circuits,” In Proc.

2012 Asia Pacific Conf. on Postgraduate Research

416

in Microelectronics and Electronics,
Communications, Hyderabad, India, Dec. 2012,
pp. 220-223.

[11] Z. Zhao and Z. Line, “Design of an

tree multiplier,”] of
Electronic Design Applications, no. 8, 2006, pp.
113-116.

[12] S. Yuan and C. Zhang,
High-Speed 4-2
Multiplier,” J. of Microelectronics & Computer,
vol. 19, no. 4, 2002, pp. 53-56.

[13] K. Thiruvenkadam, J. Ramesh, and A. S.
Pillai, fused
floating-point three-term adder,” . of Circuits,

improved Wallace

“A Design of

Compressor for Fast

“Area-efficient ~ dual-mode
Systems, and Signal Processing, vol. 38, no. 1,
2019, pp.173-190.

MR 274
Xuhao Zhang

20233 At AAHEA 38
3} 24 (F9AAD

A (Dae-lk Kim)

19919 Auvst AxEetat
4(F8hAD
19939 sojeta vletel A%
o EAFIAAD
19964 ASojska vierel Ax
53 B4 (FSPAh
2002~ @A At AR5 AT w5

3 PAROE 1 VLSI A7, Ade 324

