• Title/Summary/Keyword: floating gate

Search Result 192, Processing Time 0.028 seconds

Adjusting the Sensitivity of an Active Pixel Sensor Using a Gate/Body-Tied P-Channel Metal-Oxide Semiconductor Field-Effect Transistor-Type Photodetector With a Transfer Gate (전송 게이트가 내장된 Gate/Body-Tied P-Channel Metal-Oxide Semiconductor Field-Effect Transistor 구조 광 검출기를 이용한 감도 가변형 능동 화소 센서)

  • Jang, Juneyoung;Lee, Jewon;Kwen, Hyeunwoo;Seo, Sang-Ho;Choi, Pyung;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.114-118
    • /
    • 2021
  • In this study, the sensitivity of an active pixel sensor (APS) was adjusted by employing a gate/body-tied (GBT) p-channel metal-oxide semiconductor field-effect transistor (PMOSFET)-type photodetector with a transfer gate. A GBT PMOSFET-type photodetector can amplify the photocurrent generated by light. Consequently, APSs that incorporate GBT PMOSFET-type photodetectors are more sensitive than those APSs that are based on p-n junctions. In this study, a transfer gate was added to the conventional GBT PMOSFET-type photodetector. Such a photodetector can adjust the sensitivity of the APS by controlling the amount of charge transmitted from the drain to the floating diffusion node according to the voltage of the transfer gate. The results obtained from conducted simulations and measurements corroborate that, the sensitivity of an APS, which incorporates a GBT PMOSFET-type photodetector with a built-in transfer gate, can be adjusted according to the voltage of the transfer gate. Furthermore, the chip was fabricated by employing the standard 0.35 ㎛ complementary metal-oxide semiconductor (CMOS) technology, and the variable sensitivity of the APS was thereby experimentally verified.

Low-Power 4th-Order Band-Pass Gm-C Filter for Implantable Cardiac Pacemaker (이식형 심장 박동 조절 장치용 저 전력 4차 대역통과 Gm-C 필터)

  • Lim, Seung-Hyun;Han, Gun-Hee
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.1
    • /
    • pp.92-97
    • /
    • 2009
  • Low power consumption is crucial for medical implantable devices. A low-power 4th-order band-pass Gm-C filter with distributed gain stage for the sensing stage of the implantable cardiac pacemaker is proposed. For the implementation of large-time constants, a floating-gate operational transconductance amplifier with current division is employed. Experimental results for the filter have shown a SFDR of 50 dB. The power consumption is below $1.8{\mu}W$, the power supply is 1.5 V, and the core area is $2.4\;mm{\times}1.3\;mm$. The filter was fabricated in a 1-poly 4-metal $0.35-{\mu}m$ CMOS process.

SOI CMOS image sensor with pinned photodiode on handle wafer (SOI 핸들 웨이퍼에 고정된 광다이오드를 가진 SOI CMOS 이미지 센서)

  • Cho, Yong-Soo;Choi, Sie-Young
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.341-346
    • /
    • 2006
  • We have fabricated SOI CMOS active pixel image sensor with the pinned photodiode on handle wafer in order to reduce dark currents and improve spectral response. The structure of the active pixel image sensor is 4 transistors APS which consists of a reset and source follower transistor on seed wafer, and is comprised of the photodiode, transfer gate, and floating diffusion on handle wafer. The source of dark current caused by the interface traps located on the surface of a photodiode is able to be eliminated, as we apply the pinned photodiode. The source of dark currents between shallow trench isolation and the depletion region of a photodiode can be also eliminated by the planner process of the hybrid bulk/SOI structure. The photodiode could be optimized for better spectral response because the process of a photodiode on handle wafer is independent of that of transistors on seed wafer. The dark current was about 6 pA at 3.3 V of floating diffusion voltage in the case of transfer gate TX = 0 V and TX=3.3 V, respectively. The spectral response of the pinned photodiode was observed flat in the wavelength range from green to red.

The NAND Type Flash EEPROM Using the Scaled SONOSFET (Scaled SONOSFET를 이용한 NAND형 Flash EEPROM)

  • 김주연;권준오;김병철;서광열
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.145-150
    • /
    • 1998
  • 8$\times$8 bit scaled SONOSFET NAND type flash EEPROM that shows better characteristics on cell density and endurance than NOR type have been designed and its electrical characteristics are verified with computer aided simulation. For the simulation, the spice model parameter was extracted from the sealed down SONOSFET that was fabricated by $1.5mutextrm{m}$ topological design rule. To improve the endurance of the device, the EEPROM design to have modified Fowler-Nordheim tunneling through the whole channel area in Write/Erase operation. As a result, it operates Write/Erase operation at low current, and has been proven Its good endurance. The NAND type flash EEPROM, which has upper limit of V$_{th}$, has the upper limit of V$_{th}$ as 4.5V. It is better than that of floating gate as 4V. And a EEPROM using the SONOSFET without scaling (65$\AA$-l65$\AA$-35$\AA$), was also designed and its characteristics have been compared. It has more possibliity of error from the V$_{th}$ upper limit as 4V, and takes more time for Read operation due to low current. As a consequence, it is proven that scaled down SONOSFET is more pertinent than existing floating gate or SONOSFET without scaling for the NAND type flash EEPROM.EPROM.

  • PDF

Trap Generation Analysis by Program/Erase Speed Measurements in 50 nm Nand Flash Memory (50nm 급 낸드플래시 메모리에서의 Program/Erase 스피드 측정을 통한 트랩 생성 분석)

  • Kim, Byoung-Taek;Kim, Yong-Seok;Hur, Sung-Hoi;Yoo, Jang-Min;Roh, Yong-Han
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.4
    • /
    • pp.300-304
    • /
    • 2008
  • A novel characterization method was investigated to estimate the trap generation during the program /erase cycles in nand flash memory cell. Utilizing Fowler-Nordheim tunneling current, floating gate potential and oxide electric field, we established a quantitative model which allows the knowledge of threshold voltage (Vth) as a function of either program or erase operation time. Based on our model, the derived results proved that interface trap density (Nit) term is only included in the program operation equation, while both Nit and oxide trap density (Not) term are included in the erase operation equation. The effectiveness of our model was tested using 50 nm nand flash memory cell with floating gate type. Nit and Not were extracted through the analysis of Program/Erase speed with respect to the endurance cycle. Trap generation and cycle numbers showed the power dependency. Finally, with the measurement of the experiment concerning the variation of cell Vth with respect to program/erase cycles, we obtained the novel quantitative model which shows similar results of relationship between experimental values and extracted ones.

금속-절연체-반도체 구조를 이용한 Graphene Oxide의 특성분석

  • Park, In-Gyu;Jeong, Yun-Ho;No, Yong-Han
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.464-464
    • /
    • 2013
  • 그래핀 옥사이드(Graphene Oxide)는 그래핀과 마찬가지로 많은 분야로의 응용 가능성을 보이는 소자중 하나로 각광받고 있다. 그래핀 옥사이드가 가지는 유전체 특징은 전하 트랩층(charge trap layer)으로 사용을 가능하게 하고 또한 물에 녹는 수용성 특징은 스핀코터(spin coator)를 이용한 간단한 도포과정을 통하여 저비용으로 간단하게 소자를 제작 가능하게 한다. 이 연구에서 우리는 금속-절연체-반도체 구조를 가지는 메모리 소자를 제작하여 0.4 mg/ml의 농도로 DI에 용해된 그래핀 옥사이드가 플로팅게이트(floating gate)로써 사용되었을 때의 특성을 알아보기 위해 Boonton 720를 사용하여 C-V (hysteresis) 커브와 C-T(Capacitance-Time)를 측정하여 그래핀 옥사이드의 유무에 따른 메모리 윈도우 폭의 증가 및 저장된 정보가 손실되지 않고 얼마나 길게 유지 되는지를 살펴봄으로 플로팅게이트로써 그래핀 옥사이드의 특성을 살펴보았다. 먼저 터널링층으로 쓰이는 SiO2가 5 nm 증착된 P타입 Si기판위에 플로팅게이트로 쓰이는 그래핀 옥사이드층을 쉽게 쌓기 위하여 APTES 자기조립 단분자막 코팅을 한 후 그래핀 옥사이드를 3,000 rpm으로 40초간 스핀코팅을 하였다. 그 후 블로킹층으로 쓰이는 400 nm 두께의 폴리비닐페놀(PVP)를 3,000 rpm으로 40초간 스핀코팅을 하고 $130^{\circ}C$에서 열처리를 하였으며 $10^{-5}$ Torr의 압력에서 진공 열증착으로 알루미늄 게이트 전극을 증착했다.

  • PDF

Dynamic range extension of the n-well/gate-tied PMOSFET-type photodetector with a built-in transfer gate (내장된 전송 게이트를 가지는 n-well/gate가 연결된 구조의 PMOSFET형 광검출기의 동작 범위 확장)

  • Lee, Soo-Yeun;Seo, Sang-Ho;Kong, Jae-Sung;Jo, Sung-Hyun;Choi, Kyung-Hwa;Choi, Pyung;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.328-335
    • /
    • 2010
  • We have designed and fabricated an active pixel sensor(APS) using an optimized n-well/gate-tied p-channel metal oxide semiconductor field effect transistor(PMOSFET)-type photodetector with a built-in transfer gate. This photodetector has a floating gate connected to n-well and a built-in transfer gate. The photodetector has been optimized by changing the length of the transfer gate. The APS has been fabricated using a 0.35 ${\mu}m$ standard complementary metal oxide semiconductor(CMOS) process. It was confirmed that the proposed APS has a wider dynamic range than the APS using the previously proposed photodetector and a higher sensitivity than the conventional APS using a p-n junction photodiode.

The design and fabrication of photo sensor for CMOS image sensor (CMOS 영상 센서를 위한 광 센서의 설계 및 제작)

  • Shin, K.S.;Ju, B.K.;Lee, Y.H.;Paek, K.K.;Lee, Y.S.;Park, J.H.;Oh, M.H.
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.956-958
    • /
    • 1999
  • We designed and fabricated p-type MOSFETs with floating gate in n-type well lesion and examined their photo characteristics. The fabricated MOBFETs showed a high photo-respsonse characteristics, indicating a possibility as a photo sensor. The structures of MOSFETs were changed as to the number of gate and channel. As the number of channel increased, the induced current by light source s increased. However, the effect of the number of gate was negligble on the photo-response characteristics of the device.

  • PDF

Characteristics of Si Floating Gate Nonvolatile Memory Based on Schottky Barrier Tunneling Transistor (쇼트키 장벽 관통 트랜지스터 구조를 적용한 실리콘 나노점 부유 게이트 비휘발성 메모리 특성)

  • Son, Dae-Ho;Kim, Eun-Kyeom;Kim, Jeong-Ho;Lee, Kyung-Su;Yim, Tae-Kyung;An, Seung-Man;Won, Sung-Hwan;Sok, Jung-Hyun;Hong, Wan-Shick;Kim, Tae-You;Jang, Moon-Gyu;Park, Kyoung-Wan
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.4
    • /
    • pp.302-309
    • /
    • 2009
  • We fabricated a Si nano floating gate memory with Schottky barrier tunneling transistor structure. The device was consisted of Schottky barriers of Er-silicide at source/drain and Si nanoclusters in the gate stack formed by LPCVD-digital gas feeding method. Transistor operations due to the Schottky barrier tunneling were observed under small gate bias < 2V. The nonvolatile memory properties were investigated by measuring the threshold voltage shift along the gate bias voltage and time. We obtained the 10/50 mseconds for write/erase times and the memory window of $\sim5V$ under ${\pm}20\;V$ write/erase voltages. However, the memory window decreased to 0.4V after 104seconds, which was attributed to the Er-related defects in the tunneling oxide layer. Good write/erase endurance was maintained until $10^3$ write/erase times. However, the threshold voltages moved upward, and the memory window became small after more write/erase operations. Defects in the LPCVD control oxide were discussed for the endurance results. The experimental results point to the possibility of a Si nano floating gate memory with Schottky barrier tunneling transistor structure for Si nanoscale nonvolatile memory device.