• Title/Summary/Keyword: flexible-multi-body model

Search Result 54, Processing Time 0.044 seconds

Design and Analysis of a Linear Feeder using Computer Simulation (컴퓨터 시뮬레이션을 이용한 리니어 피더의 설계 및 분석)

  • Lee, Kyu-Ho;Kim, Sung-Hyun;Chung, Jin-Tai
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.749-753
    • /
    • 2007
  • The purpose of this study is to design of a linear feeder using a multi body dynamic program, and to analyze a dynamic motion of the feeder that can transport small mechanical parts uniformly. In order to establish the analysis model of the linear feeder, each parts of the feeder are divided into two types which the rigid and flexible body. For the dynamic simulation, RecurDyn, which is a commercial multi-body dynamic package, is used. We also consider the design parameters for optimal dynamic motion such as centroid, stiffness, and mass of the feeder system. In order to analyze the dynamic motion of a linear feeder, the displacements of the feeder are measured by several accelerometers when it is in an operating condition. After the signal data from the accelerometers are captured in the time domain, the dynamic motion in the space is visualized by using graphic computer software.

  • PDF

Three-Dimensional Sheet Modeling Using Relative Coordinate (상대 좌표를 이용한 종이류 모델링 기법)

  • Cho Heui Je;Bae Dae Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.2 s.233
    • /
    • pp.247-252
    • /
    • 2005
  • This research presents a three-dimensional modeling technique for a flexible sheet. A relative coordinate formulation is used to represent the kinematics of the sheet. The three-dimensional flexible sheet is modeled by multi-rigid bodies interconnected by out-of-plane joints and plate force elements. A parent node is designated as a master body and is connected to the ground by a floating joint to cover the rigid motion of the flexible sheet in space. Since the in-plane deformation of a sheet such as a paper and a film is relatively small, compared to out-of-plane deformation, only the out-of-plane deformation is accounted for in this research. The recursive formulation has been adopted to solve the equations of motion efficiently. An example is presented to show the validity of the proposed method.

Simulation and Experimental Methods for Media Transport System: Part I, Three-Dimensional Sheet Modeling Using Relative Coordinate

  • Cho, Heui-Je;Bae, Dea-Sung;Choi, Jin-Hwan;Lee, Soon-Geul;Rhim, Sung-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.305-311
    • /
    • 2005
  • This research presents a three-dimensional modeling technique for a flexible sheet. A relative coordinate formulation is used to represent the kinematics of the sheet. The three-dimensional flexible sheet is modeled by multi-rigid bodies interconnected by out-of-plane joints and plate force elements. A parent node is designated as a master body and is connected to the ground by a floating joint to cover the rigid motion of the flexible sheet in space. Since the in-plane deformation of a sheet such as a paper and a film is relatively small, compared to out-of-plane deformation, only the out-of-plane deformation is accounted for in this research. The recursive formulation has been adopted to solve the equations of motion efficiently. An example is presented to show the validity of the proposed method.

Simulation and Experimental Methods for Three-Dimensional Sheet Media Transport System Using Relative Coordinate (상대좌표를 이용한 3차원 미디어 이송장치에 대한 실험방법과 Simulation에 대한 연구)

  • Dae, Dae-Sung;Cho, Heui-Je
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.573-576
    • /
    • 2005
  • This research presents a three-dimensional modeling technique for a flexible sheet. A relative coordinate formulation is used to represent the kinematics of the sheet. The three-dimensional flexible sheet is modeled by multi-rigid bodies interconnected by out-of-plane joints and plate force elements. A parent node is designated as a master body and is connected to the ground by a floating joint to cover the rigid motion of the flexible sheet in space. Since the in-plane deformation of a sheet such as a paper and a film is relatively small, compared to out-of-plane deformation, only the out-of-plane deformation is accounted for in this research. The recursive formulation has been adopted to solve the equations of motion efficiently. An example is presented to show the validity of the proposed method.

  • PDF

A Study on the Effects of Dynamic Vibration Absorber for Driveline with Propeller Shaft Supported by Center Bearing (센터 베어링으로 지지된 추진축을 갖는 구동계에서의 진동흡진기의 영향에 대한 연구)

  • 강영춘;임재환;정호일;이규령;이창노;임홍재
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.925-930
    • /
    • 2004
  • This paper is to study vibration effects of the dynamic vibration absorber. Multi-body dynamic analysis is carried out for the vehicle driveline model using ADAMS with flexible propeller shaft attached with the vibration damper. Primary bending mode frequency of the propeller shaft is obtained from the simulation and coincides with the experimental result. Various design parameters are studied in dynamic simulation operated by the engine torque input. This paper identifies the responses of dynamic vibration absorbers in the driveline with propeller shaft, which will be used to find out optimal design parameters.

  • PDF

Modeling of the Maglev Vehicle Running over an elevated Guideway Using Flexible Multi-body Dynamics Based on the Model Superposition Method (모드중첩법을 이용한 자기부상열차/유연궤도 동적 모델링 연구)

  • Han, Hyung-Suk;Lee, Jong-Min;Kim, Young-Joong;Kim, Dong-Seong;Kim, Sook-Hee;Lee, Jae-Ik
    • Proceedings of the KSR Conference
    • /
    • 2006.11a
    • /
    • pp.229-238
    • /
    • 2006
  • In general, the Maglev vehicle is run over an elevated guideway consisting of steel or concrete structure. Since the running behavior of the vehicle is affected by the flexibility of the guideway, the consideration of the flexibility of guideway is needed for evaluating the dynamics of both the vehicle and guideway. A new method based on flexible multibody dynamics is proposed to model the Maglew vehicle. This method combines the levitation controller, vehicle, and guideway into a coupled model To verify the method, an urban transit is analyzed using the method and discussions are carried out.

  • PDF

Robust Control System Design for an AMB by $H_{\infty}$ Controller ($H_{\infty}$ 제어기에 의한 능동 자기 베어링 시스템의 강인한 제어계 설계)

  • Chang, Y.;Yang, J.H.
    • Journal of Power System Engineering
    • /
    • v.7 no.3
    • /
    • pp.48-53
    • /
    • 2003
  • This paper deals with the control of a horizontally placed flexible rotor levitated by electromagnets in a multi-input/multi-output (MIMO) active magnetic bearing(AMB) system. AMB is a kind of novel high performance bearing which can suspend the rotor by magnetic force. Its contact-free manner between the rotor and stator results in it being able to operate under much higher speed than conventional rolling bearings with relatively low power losses, as well as being environmental-friendly technology for AMB system having no wear and no lubrication requirements. In this MIMO AMB system, the rotor is a complex mechanical system, it not only has rigid body characteristics such as translational and slope motion but also bends as a flexible body. Reduced order nominal model is computed by consideration of the first 3 mode shapes of rotor dynamics. Then, the $H_{\infty}$ control strategy is applied to get robust controller. Such robustness of the control system as the ability of disturbance rejection and modeling error is guaranteed by using $H_{\infty}$ control strategy. Simulation results show the validation of the designed control system and the modeling method to the rotor.

  • PDF

Moan Noise Analysis of Rear Disc Brake (후륜 디스크 브레이크 Moan 노이즈 해석)

  • 박진국;김찬중;이봉현;정호일;문창룡;김정락;이충렬
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.607-612
    • /
    • 2004
  • Disc brake noise continues to be a major concern throughout the automotive industry despite efforts to reduce its occurrence. Eliminating vibrations during braking is an important task for both vehicle passenger comfort and reducing the overall environmental noise levels. There are several classes of disc brake noise, the major ones being squeal, judder, groan, and moan. In this study, analytical model for moan noise of rear disk brake is investigated. Modeling of the disc brake assembly to take account of the effect of different geometrical and contact parameters is studied through the use of multi-body model. The contact stiffness of the caliper and torque member plays an important role in controlling brake vibration. Therefore, a suitable material pair at the caliper/body contact has been made. An ADAMS model of a rear disc brake system was integrated with a flexible suspension trailng arm from MSC/NASTRAN. A fully non-linear dynamic simulatin of brake system behavior, containing rigid and flexible bodies, was performed for a Prescribed set of operating conditions. Simulation results were validated using data from vehicle experimental testing.

  • PDF

Modeling and Analysis of Interactions Between A Satellite and Variable-Speed Control Moment Gyros (인공위성과 가변속 제어모멘트자이로의 상호작용 모델링 및 해석)

  • Jin, Jaehyun;Leeghim, Henzeh
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.1
    • /
    • pp.17-26
    • /
    • 2018
  • The interaction model between variable-speed control moment gyros and a satellite has been studied based on the multi-body dynamics. Using the interaction model, we could obtain data for the design of VCMG motors and the strength design of structure. The interaction effects of flexible modules such as solar panels were included. Flexible modes are excited by the satellite's maneuver, and these modes cause perturbations in the satellite attitude. We developed a simulation program by Modelica and verified the proposed model.

Flexible Multi-body Dynamic Analysis for Reducer-integrated Motor of Autofilter (오토필터의 감속기 일체형 모터에 관한 유연 다물체 동역학 해석)

  • J.K. Kim;B.D. Kim;G.S. Lee
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.5
    • /
    • pp.311-317
    • /
    • 2023
  • An autofilter is a device that removes impurities contained in heavy fuel oil used in diesel engines of ships or power plants, and also automatically removes impurities accumulated in the filter through a reverse washing function. The reducer-integrated motor serves to rotate the filter at low speed to enable reverse automatic cleaning in the autofilter device. To achieve a low speed of 0.65 to 0.75 rpm in a reducer-integrated motor, a small motor that can operate at 97rpm at a rated voltage of 110 V and 112.5 rpm at 220 V is required. Additionally, a large gear ratio of 1/150 is required. To ensure the durability and reliability of these reducers, the strength of the gear must be evaluated at the design stage. In general, there is a limit to evaluating the stress and strain state according to the vibration characteristics acting on each gear in the driving state of the reducer through quasi-static analysis. Therefore, in this study, the operation characteristics of the auto filter's reducer-integrated motor were first analyzed using the rigid body dynamics analysis method. Then, this rigid body dynamics analysis model was extended to a flexible multibody dynamics analysis model to analyze the stress and strain states acting on each gear and evaluate the design feasibility of the gear.