• Title/Summary/Keyword: fixed point theory

Search Result 204, Processing Time 0.028 seconds

REIDEMEISTER ZETA FUNCTION FOR GROUP EXTENSIONS

  • Wong, Peter
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.6
    • /
    • pp.1107-1116
    • /
    • 2001
  • In this paper, we study the rationality of the Reidemeister zeta function of an endomorphism of a group extension. As an application, we give sufficient conditions for the rationality of the Reidemeister and the Nielsen zeta functions of selfmaps on an exponential solvmanifold or an infra-nilmanifold or the coset space of a compact connected Lie group by a finite subgroup.

  • PDF

EXISTENCE AND CONTROLLABILITY OF FRACTIONAL NEUTRAL INTEGRO-DIFFERENTIAL SYSTEMS WITH STATE-DEPENDENT DELAY IN BANACH SPACES

  • KAILASAVALLI, SUBRAMANIAN;SUGANYA, SELVARAJ;ARJUNAN, MANI MALLIKA
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.20 no.1
    • /
    • pp.51-82
    • /
    • 2016
  • In view of ideas for semigroups, fractional calculus, resolvent operator and Banach contraction principle, this manuscript is generally included with existence and controllability (EaC) results for fractional neutral integro-differential systems (FNIDS) with state-dependent delay (SDD) in Banach spaces. Finally, an examples are also provided to illustrate the theoretical results.

EXISTENCE AND CONTROLLABILITY RESULTS FOR NONDENSELY DEFINED STOCHASTIC EVOLUTION DIFFERENTIAL INCLUSIONS WITH NONLOCAL CONDITIONS

  • Ni, Jinbo;Xu, Feng;Gao, Juan
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.1
    • /
    • pp.41-59
    • /
    • 2013
  • In this paper, we investigate the existence and controllability results for a class of abstract stochastic evolution differential inclusions with nonlocal conditions where the linear part is nondensely defined and satisfies the Hille-Yosida condition. The results are obtained by using integrated semigroup theory and a fixed point theorem for condensing map due to Martelli.

ON A LOTKA-VOLTERRA TYPE SIMPLE FOOD-CHAIN MODEL

  • Ko, Wonlyul;Ryu, Kimun
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.20 no.3
    • /
    • pp.231-243
    • /
    • 2007
  • In this paper, we study a Lotka-Volterra type simple food chain model. We investigate the positive coexistence of the steady states to the model and give some results for the extinction of species under certain assumptions which can be interpreted as Domino effect and Biological control. The methods of a decoupling operator and the fixed point index theory on a positive cone are used as well as the comparison argument. Numerical evidences for our results also are provided.

  • PDF

MULTIPLE POSITIVE SOLUTIONS OF INTEGRAL BOUNDARY VALUE PROBLEMS FOR FRACTIONAL DIFFERENTIAL EQUATIONS

  • Liu, Xiping;Jin, Jingfu;Jia, Mei
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.1_2
    • /
    • pp.305-320
    • /
    • 2012
  • In this paper, we study a class of integral boundary value problems for fractional differential equations. By using some fixed point theorems, the results of existence of at least three positive solutions for the boundary value problems are obtained.

ABSTRACT FUNCTIONAL DIFFERENTIAL EQUATIONS IN BANACH SPACES

  • Jeong, Jin-Gyo;Shin, Ki-Yeon
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.501-503
    • /
    • 1997
  • The existence of a unique local generalized solution for the abstract functional evolution problem of the type $$ (FDE:\phi) x'(t) + A(t, x_t)x(t) \ni G(t, x_t), t \in [0, T], x_0 = \phi $$ in a general Banach spaces is considered. It is shown that $(FDE:\phi)$ could be considered with well-known fixed point theory and recent results for the functional differential equations involving the operator A(t).

  • PDF

EIGENVALUES OF COUNTABLY CONDENSING MAPS

  • Kim, In-Sook;Kim, Yun-Ho;Kwon, Sung-Hui
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.2
    • /
    • pp.271-279
    • /
    • 2009
  • Using an index theory for countably condensing maps, we show the existence of eigenvalues for countably k-set contractive maps and countably condensing maps in an infinite dimensional Banach space X, under certain condition that depends on the quantitative haracteristic, that is, the infimum of all $k\;{\geq}\;1$ for which there is a countably k-set-contractive retraction of the closed unit ball of X onto its boundary.

EXISTENCE AND NONEXISTENCE OF POSITIVE SOLUTIONS TO NONLOCAL BOUNDARY VALUE PROBLEMS WITH STRONG SINGULARITY

  • Chan-Gyun Kim
    • East Asian mathematical journal
    • /
    • v.39 no.1
    • /
    • pp.29-36
    • /
    • 2023
  • In this paper, we consider φ-Laplacian nonlocal boundary value problems with singular weight function which may not be in L1(0, 1). The existence and nonexistence of positive solutions to the given problem for parameter λ belonging to some open intervals are shown. Our approach is based on the fixed point index theory.