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EXISTENCE AND CONTROLLABILITY RESULTS

FOR NONDENSELY DEFINED STOCHASTIC

EVOLUTION DIFFERENTIAL INCLUSIONS

WITH NONLOCAL CONDITIONS

Jinbo Ni, Feng Xu, and Juan Gao

Abstract. In this paper, we investigate the existence and controllability
results for a class of abstract stochastic evolution differential inclusions
with nonlocal conditions where the linear part is nondensely defined and
satisfies the Hille-Yosida condition. The results are obtained by using
integrated semigroup theory and a fixed point theorem for condensing
map due to Martelli.

1. Introduction

In this paper, we are interested in the existence and controllability problem
of the following system

(1.1)

{
dx(t) ∈ [Ax(t) + F (t, x(t))]dt + g(t, x(t))dW (t), t ∈ [0, T ],

x(0) + θ(x) = x0,

where A : D(A) ⊂ H → H is a nondensely defined closed linear operator
on a separable Hilbert space H . Let K be another separable Hilbert space.
Suppose W (t) is a given K-valued Brownian motion with a finite trace nuclear
covariance operator Q ≥ 0. P(H) denotes the space of nonempty subsets of the
space H . Assume that F : [0, T ]×H → P(H), g : [0, T ]×H → L0

2(K,H) are
two measurable mappings, where L0

2(K,H) denotes the space of all Q-Hilbert-
Schmidt operators from K into H and it will be described in detail Section 2
and θ : H → L2(Ω, H) is a given function.

Stochastic differential equations of inclusions play a very important role in
mechanical, electrical, control engineering as well as physical, economic, and
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social science. Therefore, the theory of stochastic differential equations of in-
clusions has been developed at early stage. There has been extensive existence
and controllability results for stochastic differential equations or inclusions,
where the operator A is densely defined and satisfies the Hille-Yosida condition
or equivalently, A generates a C0 semigroup. Many important results can be
found in [3, 6, 7, 8, 11, 20, 25, 26] and references cited therein. However, as
indicated in [12], we sometimes need to deal with nondensely defined operators.
For example, age-dependent population models can be written as abstract semi-
linear functional differential equations with a nondensely defined Hille-Yosida
operator. See [12] for more examples and remarks concerning non-densely de-
fined operators. When the operator A is nondensely defined and the problem
(1.1) is deterministic, existence of integral solutions and controllability results
have been obtained in many works by using integrated semigroup theory, and
the readers can refer to [1, 2, 10, 15, 16, 17, 22, 23] and references cited therein.

To the best of our knowledge, there is no work reported on the existence
of integral solutions and controllability results for the stochastic functional
differential equations or inclusions with nondensely defined operators. Since
stochastic effects exist widely in realistic situations, it is necessary to discuss
stochastic differential equations or inclusions. The aim of this paper is to close
the gap. The main tools in the approach followed in this work are the theory
of integrated semigroups, a fixed point theorem of multivalued map due to
Martelli and the Itô formula for stochastic integral in Hilbert spaces.

This paper will be organized as follows. In Section 2, we will recall some
basic definitions and preliminary facts from multivalued analysis, integrated
semigroups and stochastic integral in Hilbert spaces which will be used later.
Section 3 is devoted to the existence of integral solutions to problem (1.1).
Section 4 is reserved for controllability results.

2. Preliminaries

Let {Ω,F, P} be a complete probability space equipped with some σ-algebras
{Ft}t≥0 satisfying the usual conditions. Let H and K be two real separable
Hilbert spaces. Without the risk of confusion, we just use 〈·, ·〉 for the inner
product and | · | for the norm.

Let βn(t) (n = 1, 2, . . .) be a sequence of real-valued one dimensional stan-
dard Brownian motions mutually independent over {Ω,F, P}. Set

W (t) =

∞∑

n=1

√
λnβn(t)en, t ≥ 0,

where λn ≥ 0 (n = 1, 2, . . .) are nonnegative real numbers and en (n = 1, 2, . . .)
is a complete orthonormal basis in K. Let Q ∈ L(K,K) be an operator defined
by Qen = λnen with finite trace Tr(Q) =

∑∞
n=1 λn < ∞. Then the above K-

valued stochastic process W (t) is called a Q Winner process. We denote by
L(K,H) the set of all linear bounded operators from K into H . For Ψ ∈
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L(K,H), we define

‖Ψ‖2L0

2

= Tr(ΨQΨ∗) =

∞∑

n=1

‖
√
λnΨen‖

2.

If ‖Ψ‖L0

2

< ∞, then Ψ is called a Q-Hilbert-Schmidt operators. Let L0
2(K,H)

denote the space of all Q-Hilbert-Schmidt operators Ψ : K → H . Let Ψ :
[0, T ] → L0

2(K,H) be predicable process such that
∫ t

0

E‖Ψ‖2L0

2

ds < ∞.

Then we can define the H-valued stochastic integral
∫ t

0
Ψ(s)dW (s), which is a

continuous square integrable martingale. For more details of this construction,
see Da. Prato [13].

Definition 2.1 (see [4]). Let E be a Banach space. An integrated semigroup
is a family of operators (S(t))t≥0 of bounded linear operators S(t) on E with
the following properties:

(i) S(0) = 0;
(ii) t → S(t) is strongly continuous;
(iii) S(s)S(t) =

∫ s

0 (S(t+ r)− S(r))dr for all t, s ≥ 0.

Definition 2.2 (see [18]). An operator A is called a generator of an integrated
semigroup, if there exists ω ∈ R such that (ω,+∞) ⊂ ρ(A) and there exists a
strongly continuous exponentially bounded family (S(t))t≥0 of linear bounded
operators such that S(0) = 0 and (λI −A)−1 = λ

∫∞

0 e−λtS(t)dt for all λ > ω.

Definition 2.3. We say that linear operator A satisfies the Hille-Yosida con-
dition if there exist M ≥ 0 and ω ∈ R such that (ω,+∞) ⊂ ρ(A) and

sup{(λ− ω)n‖R(λ,A)n‖, n ∈ N, λ > ω} ≤ M.

Theorem 2.4 (see [18]). The following assertions are equivalent:
(i) A is the generator of a locally Lipschitz continuous integrated semigroup;
(ii) A satisfies the Hille-Yosida condition.

Here and hereafter, we assume that A satisfies the Hille-Yosida condition.

Let us introduce the part A0 of A in D(A) : A0 = A on D(A0) = {x ∈

D(A);Ax ∈ D(A)}. Let (S(t))t≥0 be the integrated semigroup generated by

A. We note that (S′(t))t≥0 is a C0-semigroup on D(A) generated by A0 and
‖S′(t)‖ ≤ Meωt, t ≥ 0, where M and ω are the constants considered in the
Hille-Yosida condition (see [18, 23]).

Let Bλ = λR(λ,A) := λ(λI − A)−1. Then for all x ∈ D(A), Bλx →
x as λ → ∞. Also from the Hille-Yosida condition it is easy to see that
limλ→∞ |Bλx| ≤ M |x|.

For more properties on integral semigroup theory, the interested reader may
refer to [5, 22].
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Let (X, d) be a metric space, P(X) denotes the family for all nonempty
subsets of X . We use the notations:

Pcl(X) = {Y ∈ P(X) : Y closed}, Pb(X) = {Y ∈ P(X) : Y bounded},

Pc(X) = {Y ∈ P(X) : Y convex}, Pcp(X) = {Y ∈ P(X) : Y compact}.

Amultivalued map F : X → P(X) is convex (closed) valued if F (x) is convex
(closed) for all x ∈ X , F is bounded on bounded sets if F (B) = Ux∈BF (x)
is bounded in X for all B ∈ Pb(X), i.e., supx∈B{sup{|y| : y ∈ F (x)}} ≤ ∞.
F is called upper semi-continuous (u.s.c. for short) on X if for each x0 ∈ X

the set F (x0) is a nonempty, closed subset of X , and for each open set U
of X containing F (x0), there exists an open neighborhood V of x0 such that
F (V) ⊂ U . F is said to be completely continuous if F (B) is relatively compact
for every B ∈ Pb(X).

If the multivalued map F is completely continuous with nonempty compact
valued, then F is u.s.c. if and only if F has a closed graph, i.e., xn → x∗,
yn → y∗, yn ∈ F (xn) imply y∗ ∈ F (x∗).

Definition 2.5 (see [9]). An upper semicontinuous map G : H → H is said
to be condensing if for any bounded subset V ⊂ H with α(V ) 6= 0, we have
α(G(V )) < α(V ), where α denotes the Kuratowski measure of noncompactness.

We remark that a completely continuous multivalued map is the easiest
example of a condensing map.

Theorem 2.6 (see [19]). Let J be a compact interval and E be a Banach space.

Let F : J × C(J,E) → Pb,cl,c(E), (t, u) 7→ F (t, u) be measurable with respect

to t for each u ∈ E, upper semicontinuous with respect to u for each t ∈ J .

Moreover, for each fixed u ∈ C(J,E) the set

NF,u = {f ∈ L2(J,E) : f(t) ∈ F (t, u) for a.e. t ∈ [0, T ]}

is nonempty. Also let Γ be a linear continuous mapping from L2(J,E) to

C(J,E), then the operator

Γ ◦NF : C(J,E) → Pb,cl,c(C(J,E)), u → (Γ ◦NF )(u) = Γ(NF,u)

is a closed graph operator in C(J,E)× C(J,E).

Theorem 2.7 (see [21]). Let E be a Banach space and Φ : E → Pb,cl,c(E) a

condensing map. If the set

U = {x ∈ E : δx ∈ Φx for some δ > 1}

is bounded, then Φ has a fixed point.

More details on multivalued maps can be found in the book of Deimling [14].
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3. Existence results

Let C = C([0, T ], L2(Ω, H)) denote the class of H-valued stochastic process

{ξ(t) : t ∈ [0, T ]} which are Ft-adapt and ‖ξ‖ = ‖ξ‖C = supt∈[0,T ](E|ξ(t)|2)
1

2 .
It is easy to verify that C furnished with the norm topology as defined above
is a Banach space.

Definition 3.1. We say that x ∈ C is an integral solution of problem (1.1) if

(i)
∫ t

0
x(s)ds ∈ D(A), t ∈ [0, T ],

(ii) there exists a function f ∈ L2([0, T ], H) such that f(t) ∈ F (t, x(t)) a.e.
t ∈ [0, T ] and
(3.1)

x(t) = x0 − θ(x) +A

∫ t

0

x(s)ds+

∫ t

0

f(s)ds+

∫ t

0

g(s, x(s))dW (s), t ∈ [0, T ].

From this definition, we deduce that for an integral solution x, we have x(t) ∈

D(A) for all t ∈ [0, T ], because x(t) = limh→0
1
h

∫ t+h

t
x(s)ds and

∫ t+h

t
x(s)ds ∈

D(A). In particular, x0 − θ(x) ∈ L2(Ω, D(A)). So, if we assume that x0 ∈

L2(Ω, D(A)) we conclude that θ(x) ∈ L2(Ω, D(A)).

Lemma 3.2. If x is an integral solution of problem (1.1), then for t ∈ [0, T ],
x(t) is given by

x(t) = S′(t)(x0 − θ(x)) + lim
λ→∞

∫ t

0

S′(t− s)Bλf(s)ds

+ lim
λ→∞

∫ t

0

S′(t− s)Bλg(s, x(s))dW (s).

Proof. Let x(t) be an integral solution of problem (1.1) and set xλ(t) = Bλx(t).
Then, by applying Bλ to both sides of (3.1), we get

xλ(t) = Bλ(x0 − θ(x)) +

∫ t

0

Axλ(s)ds+

∫ t

0

Bλf(s)ds+

∫ t

0

Bλg(s, x(s))dW (s).

Set u(s, xλ(s)) = S′(t− s)xλ(s), then by Itô formula (see [13]), we get that

dS′(t− s)xλ(s)

= S′(t− s)Bλg(s, x(s))dW (s)

+ [−AS′(t− s)xλ(s) + S′(t− s)(Axλ(s) +Bλf(s))]ds

= S′(t− s)Bλg(s, x(s))dW (s) + S′(t− s)Bλf(s)ds.

Integrating the equality above from 0 to t and noting that S′(0) = I and
x(0) = x0 − θ(x), we have

xλ(t) = S′(t)Bλ(x0 − θ(x)) +

∫ t

0

S′(t− s)Bλf(s)ds

+

∫ t

0

S′(t− s)Bλg(s, x(s))dW (s).
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Let λ → ∞, since for all x ∈ D(A), Bλx → x as λ → ∞, we have

x(t) = S′(t)(x0 − θ(x)) + lim
λ→∞

∫ t

0

S′(t− s)Bλf(s)ds

+ lim
λ→∞

∫ t

0

S′(t− s)Bλg(s, x(s))dW (s).

This completes the proof. �

We are now in a position to state and prove our main result for the existence
of solutions of problem (1.1).

Let us list the following hypotheses:
(H1) A satisfies the Hille-Yosida condition.

(H2) The operator S′(t) is compact in D(A) whenever t > 0.
(H3) F : [0, T ]×H → Pb,cl,c(H) for each u ∈ H , F (·, u) is measurable and

for each t ∈ [0, T ], F (t, ·) is upper semicontinuous. For each fixed u ∈ H , the
set NF,u = {f ∈ L2([0, T ], H) : f(t) ∈ F (t, u) for a.e. t ∈ [0, T ]} is not empty.

(H4) g : [0, T ] × H → L0
2(K,H) is continuous with respect to u and there

exist constants c1, c2 ≥ 0 such that |g(t, u)|2 ≤ c1|u|
2 + c2 for u ∈ H .

(H5) x0 ∈ L2(Ω, D(A)), θ : H → L2(Ω, D(A)) and there exists L > 0 such
that E|θ(x)|2 ≤ L for all x ∈ H .

(H6) |F (t, u)|2 = sup{|v|2 : v ∈ F (t, u)} ≤ η(t)Ψ((|u|2)) for almost all
t ∈ [0, T ] and u ∈ H , where η ∈ L1([0, T ],R+) and Ψ : R

+ → (0,∞) is
continuous concave and increasing with

∫ T

0

m(s)ds <

∫ ∞

c0

dτ

1 + τ +Ψ(τ)
,

where

c0 = 6M2e2|ω|T (E|x0|
2 + L),

m(t) = max{c3e
−2ωtη(t), c1c4e

−2ωt, c2c4e
−2ωt},

c3 = 3M4Te2|ω|T ,

c4 = 3M4e2|ω|T .

Theorem 3.3. Assume that hypotheses (H1)-(H6) hold. Then the problem

(1.1) has at least one integral solution on [0, T ].

Proof. Denote C0 = C([0, T ], L2(Ω, D(A))), which is a closed subset of C.
Obviously, C0 with the same norm in C is also a Banach space. Consider the
multivalued map Φ : C0 → P(C0) defined by

Φx =

{
h ∈ C0 : Bλh(t) = S′(t)Bλ(x0 − θ(x)) +

∫ t

0

S′(t− s)Bλf(s)ds

+

∫ t

0

S′(t− s)Bλg(s, x(s))dW (s), t ∈ [0, T ]

}
,
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where f ∈ NF,x = {f ∈ L2([0, T ]× Ω, H) : f(t) ∈ F (t, x(t)) for a.e. t ∈ [0, T ]}.
Since limλ→∞ Bλh = h for h ∈ C0, it is clear that the fixed points of Φ are

integral solutions to problem (1.1). We shall prove that Φ satisfies Theorem
2.7 in the following steps.

Step 1. Φ(x) is convex for each x ∈ C0.
Indeed, if h1 and h2 belong to Φx, then there exist f1, f2 ∈ NF,x such that

for each t ∈ [0, T ], we have

Bλhi(t) = S′(t)Bλ(x0 − θ(x)) +

∫ t

0

S′(t− s)Bλfi(s)ds

+

∫ t

0

S′(t− s)Bλg(s, x(s))dW (s), i = 1, 2.

Let 0 ≤ k ≤ 1, then for each t ∈ [0, T ], we have

Bλ(kh1 + (1 − k)h2)(t)

= S′(t)Bλ(x0 − θ(x)) +

∫ t

0

S′(t− s)Bλ(kf1(s) + (1 − k)f2(s))ds

+

∫ t

0

S′(t− s)Bλg(s, x(s))dW (s).

Since NF,x is convex, we have kh1 + (1 − k)h2 ∈ Φx. The proof of Step 1 is
completed.

Step 2. Φ maps bounded sets into bounded sets in C0.
Indeed, it is enough to show that there exists a positive constant l such that

for each h ∈ Φx, x ∈ Bq = {x ∈ C0, ‖x‖
2 ≤ q} one has ‖h‖2 ≤ l.

Let h ∈ Φx, then there exists f ∈ NF,x such that for t ∈ [0, T ], we have

Bλh(t) = S′(t)Bλ(x0 − θ(x)) +

∫ t

0

S′(t− s)Bλf(s)ds

+

∫ t

0

S′(t− s)Bλg(s, x(s))dW (s).

Thus

E|Bλh(t)|
2

= E

∣∣∣∣S
′(t)Bλ(x0 − θ(x)) +

∫ t

0

S′(t− s)Bλf(s)ds

+

∫ t

0

S′(t− s)Bλg(s, x(s))dW (s)

∣∣∣∣
2

≤ 3E|S′(t)Bλ(x0 − θ(x))|2 + 3E|

∫ t

0

S′(t− s)Bλf(s)ds|
2

+ 3E|

∫ t

0

S′(t− s)Bλg(s, x(s))dW (s)|2
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≤ 3M2e2ωtE|Bλ(x0 − θ(x))|2 + 3M4e2ωtTE

∫ t

0

e−2ωs|f(s)|2ds

+ 3M4e2ωtE

∫ t

0

e−2ωs|g(s, x(s))|2ds.

Hence,

lim
λ→∞

E|Bλh(t)|
2

≤ 3M2e2ωt lim
λ→∞

E|Bλ(x0 − θ(x))|2 + 3M4e2ωtTE

∫ t

0

e−2ωs|f(s)|2ds

+ 3M4e2ωtE

∫ t

0

e−2ωs|g(s, x(s))|2ds.

From the Fatou lemma, Fubini theorem and the fact that limλ→∞ Bλx = x for
all x ∈ D(A), we get that

E|h(t)|2 ≤ 3M2e2ωtE|(x0 − θ(x))|2 + 3M4e2ωtT

∫ t

0

e−2ωsE|f(s)|2ds

+ 3M4e2ωt

∫ t

0

e−2ωsE|g(s, x(s))|2ds.

From (H4)-(H6), we have for each t ∈ [0, T ],

E|h(t)|2 ≤ 6M2e2ωt(E|x0|
2 + E|θ(x)|2) + 3M4e2ωtT

∫ t

0

e−2ωsE|f(s)|2ds

+ 3M4e2ωt

∫ t

0

e−2ωsE|g(s, x(s))|2ds

≤ 6M2e2|ω|T (E|x0|
2 + L) + 3M4Te2|ω|TΨ(q)

∫ t

0

e−2ωsη(s)ds

+M4e2|ω|T

∫ t

0

e−2ωs(c1q + c2)ds.

Then, for each h ∈ Φ(Bq) we have

‖h‖2 = sup
t∈[0,T ]

E|h(t)|2

≤ 6M2e2|ω|T (E|x0|
2 + L) + 3M4Te2|ω|TΨ(q)

∫ T

0

e−2ωsη(s)ds

+ 3M4e2|ω|T

∫ T

0

e−2ωs(c1q + c2)ds

:= l.

Step 3. Φ maps bounded sets into equicontinuous sets of C0.
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Let t1, t2 ∈ [0, T ], t1 < t2 and Bq = {x ∈ C0, ‖x‖
2 ≤ q} be a bounded set of

C0. For each x ∈ Bq and h ∈ Φx, there exists f ∈ NF,x such that

Bλh(t) = S′(t)Bλ(x0 − θ(x)) +

∫ t

0

S′(t− s)Bλf(s)ds

+

∫ t

0

S′(t− s)Bλg(s, x(s))dW (s), t ∈ [0, T ].

Therefore we have

E|Bλ(h(t2)− h(t1))|
2

= E

∣∣∣∣S
′(t2)Bλ(x0 − θ(x)) +

∫ t2

0

S′(t2 − s)Bλf(s)ds

+

∫ t2

0

S′(t2 − s)Bλg(s, x(s))dW (s) − S′(t1)Bλ(x0 − θ(x))

−

∫ t1

0

S′(t1 − s)Bλf(s)ds−

∫ t1

0

S′(t1 − s)Bλg(s, x(s))dW (s)

∣∣∣∣
2

= E

∣∣∣∣(S
′(t2)− S′(t1))Bλ(x0 − θ(x)) +

∫ t2

0

(S′(t2 − s)− S′(t1 − s))Bλf(s)ds

+

∫ t2

0

(S′(t2 − s)− S′(t1 − s))Bλg(s, x(s))dW (s)

+

∫ t2

t1

S′(t1 − s)Bλf(s)ds+

∫ t2

t1

S′(t1 − s)Bλg(s, x(s))dW (s)

∣∣∣∣
2

≤ 5|S′(t2)− S′(t1)|
2E|Bλ(x0 − θ(x))|2

+ 5E

∣∣∣∣
∫ t2

0

(S′(t2 − s)− S′(t1 − s))Bλf(s)ds

∣∣∣∣
2

+ 5

∣∣∣∣
∫ t2

0

(S′(t2 − s)− S′(t1 − s))Bλg(s, x(s))dW (s)

∣∣∣∣
2

+ 5E

∣∣∣∣
∫ t2

t1

S′(t1 − s)Bλf(s)ds

∣∣∣∣
2

+ 5E

∣∣∣∣
∫ t2

t1

S′(t1 − s)Bλg(s, x(s))dW (s)

∣∣∣∣
2

≤ 5|S′(t2)− S′(t1)|
2E|Bλ(x0 − θ(x))|2

+ 5TM2

∫ t2

0

|S′(t2 − s)− S′(t1 − s)|2E|f(s)|2ds

+ 5M2

∫ t2

0

|S′(t2 − s)− S′(t1 − s)|2E|g(s, x(s))|2ds

+ 5TM2

∫ t2

t1

|S′(t1 − s)|2E|f(s)|2ds
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+ 5M2

∫ t2

t1

|S′(t1 − s)|2E|g(s, x(s))|2ds.

Let λ → ∞, we get

E|h(t2)− h(t1)|
2

≤ 5|S′(t2)− S′(t1)|
2E|(x0 − θ(x))|2

+ 5TM2

∫ t2

0

|S′(t2 − s)− S′(t1 − s)|2E|f(s)|2ds

+ 5M2

∫ t2

0

|S′(t2 − s)− S′(t1 − s)|2E|g(s, x(s))|2ds

+ 5TM2

∫ t2

t1

S′(t1 − s)2E|f(s)|2ds+ 5M2

∫ t2

t1

|S′(t1 − s)|2E|g(s, x(s))|2ds.

(H2) implies that S′(t) for t > 0 is continuous in the uniform operator
topology. Combining this with (H4)-(H6), we have the right side of the above
inequality tend to zero as t2 → t1. This completes the proof.

Step 4. (ΦBq)(t) is relatively compact in C0 for each t, where (ΦBq)(t) =
{h(t) : h ∈ ΦBq}, t ∈ [0, T ] and Bq = {x ∈ C0, ‖x‖

2 ≤ q}.
It is obvious that (ΦBq)(t) is relatively compact in C0 for t = 0.
Let 0 < t ≤ T be fixed and 0 < ǫ < t. For x ∈ Bq and h ∈ Φx, there exists

f ∈ NF,x such that

Bλh(t) = S′(t)Bλ(x0 − θ(x)) +

∫ t−ǫ

0

S′(t− s)Bλf(s)ds

+

∫ t

t−ǫ

S′(t− s)Bλf(s)ds+

∫ t−ǫ

0

S′(t− s)Bλg(s, x(s))dW (s)

+

∫ t

t−ǫ

S′(t− s)Bλg(s, x(s))dW (s).

We define

Bλhǫ(t) = S′(t)Bλ(x0 − θ(x)) +

∫ t−ǫ

0

S′(t− s)Bλf(s)ds

+

∫ t−ǫ

0

S′(t− s)Bλg(s, x(s))dW (s).

Let λ → ∞, we get

hǫ(t) = S′(t)(x0 − θ(x)) + S′(ǫ) lim
λ→∞

[∫ t−ǫ

0

S′(t− ǫ− s)Bλf(s)ds

+

∫ t−ǫ

0

S′(t− ǫ− s)Bλg(s, x(s))dW (s)

]
.
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Since S′(t) is a compact operator, the set Vǫ(t) = {hǫ(t), h ∈ ΦBq} is relative
compact in C0 for each ǫ, 0 < ǫ ≤ t. Then we have

E|Bλ(h(t)− hǫ(t))|
2

= E

∣∣∣∣
∫ t

t−ǫ

S′(t− s)Bλf(s)ds−

∫ t

t−ǫ

S′(t− s)Bλg(s, x(s))dW (s)

∣∣∣∣
2

≤ 2Mǫ2
∫ t

t−ǫ

|S′(t− s)|2E|f(s)|2ds+ 2M

∫ t

t−ǫ

|S′(t− s)|2E|g(s, x(s))|2ds.

Hence, E|h(t)− hǫ(t)|
2 = limλ→∞ E|Bλ(h(t)− hǫ(t))|

2 → 0 as ǫ → 0.
Therefore, there are relative compact sets arbitrarily close to the set {h(t),

h ∈ Φ(Bq)}. Thus the set {h(t), h ∈ Φ(Bq)} is relative compact in C0. As a
consequence of Steps 2, 3, 4 and the Arzela-Ascoli theorem it is concluded that
Φ : C0 → P(C0) is a completely continuous map.

Step 5. Φ has a closed graph.
Let xn → x∗, hn ∈ Φxn and hn → h∗ as n → ∞, we shall prove that

h∗ ∈ Φx∗. hn ∈ Φxn means that there exists fn ∈ NF,xn
such that

Bλhn(t) = S′(t)Bλ(x0 − θ(xn)) +

∫ t

0

S′(t− s)Bλfn(s)ds

+

∫ t

0

S(t− s)Bλg(s, xn(s))dW (s), t ∈ [0, T ].

We must prove that there exists f∗ ∈ NF,x∗
such that

Bλh∗(t) = S′(t)Bλ(x0 − θ(x∗)) +

∫ t

0

S′(t− s)Bλf∗(s)ds

+

∫ t

0

S′(t− s)Bλg(s, x∗(s))dW (s), t ∈ [0, T ].

Since u → g(t, u) and θ are continuous we have that
∥∥∥∥Bλhn − S′(t)Bλ(x0 − θ(xn))−

∫ t

0

S′(t− s)Bλg(s, xn(s))dW (s)

−

[
Bλh∗(t)− S′(t)Bλ(x0 − θ(x∗))−

∫ t

0

S′(t− s)Bλg(s, x∗(s))dW (s)

]∥∥∥∥

tends to 0 as n → 0. Consider the linear continuous operator

Γ : L2([0, T ], H) → C([0, T ], H), f → (Γf)(t) =

∫ t

0

S′(t− s)Bλf(s)ds.

From Theorem 2.6, it follows that Γ◦NF is a closed graph operator. Moreover,
we have that

Bλhn − S′(t)Bλ(x0 − θ(xn))−

∫ t

0

S′(t− s)Bλg(s, xn(s))dW (s) ∈ Γ(NF,xn
).
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Since xn → x∗, it follows from Theorem 2.6 that there exists f∗ ∈ NF,x∗
such

that

Bλh∗(t)− S′(t)Bλ(x0 − θ(x∗))−

∫ t

0

S′(t− s)Bλg(s, x∗(s))dW (s)

=

∫ t

0

S′(t− s)Bλf∗(s)ds.

Therefore Φ is a completely continuous multivalued map, u.s.c. with convex
closed values. In order to prove that Φ has a fixed point, we need one more
step.

Step 6. The set U = {x ∈ C0 : δx ∈ Φx for some δ > 1} is bounded.
Let x ∈ U , then δx ∈ Φx for some δ > 1. Thus there exists f ∈ NF,x such

that for t ∈ [0, T ],

Bλx(t) = δ−1S′(t)Bλ(x0 − θ(x)) + δ−1

∫ t

0

S′(t− s)Bλf(s)ds

+

∫ t

0

S′(t− s)Bλg(s, x(s))dW (s).

From (H4)-(H6) we have that for each t ∈ [0, T ],

E|x(t)|2 = lim
λ→∞

E

∣∣∣∣δ
−1S′(t)Bλ(x0 − θ(x)) + δ−1

∫ t

0

S′(t− s)Bλf(s)ds

+ δ−1

∫ t

0

S′(t− s)Bλg(s, x(s))dW (s)

∣∣∣∣
2

≤ lim
λ→∞

3|S′(t)|2E|Bλ(x0 − θ(x))|2 + 3M4e2ωtT

∫ t

0

e−2ωsE|f(s)|2ds

+ 3M4e2ωt

∫ t

0

e−2ωsE|g(s, x(s))|2ds

≤ 6M2e2|ω|T (E|x0|
2 + L) + 3M4Te2|ω|T

∫ t

0

e−2ωsη(s)Ψ(E|x(s)|2)ds

+ 3M4e2|ω|T

∫ t

0

e−2ωs(c1E|x(s)|2 + c2)ds.

We shall consider the function µ defined by µ(t) = sup{E|x(s)|2, 0 ≤ s ≤ t}.
By the previous inequality we have for t ∈ [0, T ],

µ(t) ≤ 6M2e2|ω|T (E|x0|
2 + L) + 3M4Te2|ω|T

∫ t

0

e−2ωsη(s)Ψ(µ(s))ds

+ 3M4e2|ω|T

∫ t

0

e−2ωs(c1µ(s) + c2)ds.
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By (H6), we have

µ(t) ≤ c0 + c3

∫ t

0

e−2ωsη(s)Ψ(µ(s))ds + c4

∫ t

0

e−2ωs(c1µ(s) + c2)ds.

Let us take the right-hand side of the above inequality as v(t). Then we
have µ(t) ≤ v(t) for all t ∈ [0, T ] with v(0) = c0 and

v′(t) = c3e
−2ωtη(t)Ψ(µ(t)) + c4e

−2ωt(c1µ(t) + c2).

Using that Ψ is increasing, we get

v′(t) ≤ c3e
−2ωtη(t)Ψ(v(t)) + c4e

−2ωt(c1v(t) + c2)

≤ m(t)(1 + v(t) + Ψ(v(t))).

Integrating from 0 to t we get
∫ t

0

v′(s)

1 + v(s) + Ψ(v(s))
ds ≤

∫ t

0

m(s)ds.

By a change of variable and (H6), we obtain
∫ v(t)

v(0)

dτ

1 + τ +Ψ(τ)
≤

∫ T

0

m(s)ds <

∫ ∞

c0

dτ

1 + τ +Ψ(τ)
.

This inequality implies that there exists a constant L such that v(t) ≤ L, t ∈
[0, T ] and hence µ(t) ≤ L, t ∈ [0, T ]. Since for every t ∈ [0, T ], E|x(t)|2 ≤ µ(t),
we have ‖x‖2 = sup{E|x(t)|2 : 0 ≤ t ≤ T } ≤ L, where L depends only on T

and on the functions η and Ψ. This shows that U is bounded.
As a consequence of Theorem 2.7, we conclude that Φ has a fixed point

which is the integral solution of problem (1.1). This completes the proof. �

4. Controllability results

In this section, we prove controllability results for stochastic semilinear evo-
lution differential equations with nonlocal conditions of the form

(4.1)

{
dx(t) ∈ [Ax(t) + F (t, x(t)) +Bu(t)]dt+ g(t, x(t))dW (t), t ∈ [0, T ],

x(0) + θ(x) = x0,

where A,F, g and θ are as in system (1.1), the control operator u(·) take values
in L2([0, T ], U) of admissible control functions for a separable Hilbert space U

and B is a bounded linear operator from U into H .

Definition 4.1. We say that x(t) ∈ C is an integral solution of problem (4.1)
if

(i)
∫ t

0
x(s)ds ∈ D(A), t ∈ [0, T ],

(ii) there exists a function f ∈ L2([0, T ], H) such that f(t) ∈ F (t, x(t)) a.e.
t ∈ [0, T ] and

x(t) = x0 − θ(x) +A

∫ t

0

x(s)ds +

∫ t

0

[f(s) + (Bu)(s)]ds
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+

∫ t

0

g(s, x(s))dW (s), t ∈ [0, T ],

where C is as in Section 3.

Lemma 4.2. If x is an integral solution of problem (4.1), then for t ∈ [0, T ],
x(t) is given by

x(t) = S′(t)(x0 − θ(x)) + lim
λ→∞

∫ t

0

S′(t− s)Bλf(s)ds

+ lim
λ→∞

∫ t

0

S′(t− s)Bλ(Bu)(s)ds + lim
λ→∞

∫ t

0

S′(t− s)Bλg(s, x(s))dW (s).

The proof is similar to the proof of Lemma 3.2, we omit it here.

Definition 4.3. The system (4.1) is said to be controllable on [0, T ] if for

every x1 ∈ L2(Ω, D(A)), there exists a control u ∈ L2([0, T ], U) such that the
integral solution x(t) of system (4.1) satisfies x(T ) + θ(x) = x1.

Theorem 4.4. Assume that hypotheses (H1)-(H5) hold. In addition, we sup-

pose that

(H7) the linear operator W : L2([0, T ], U) → D(A) defined by

Wu =

∫ t

0

S′(t− s)Bλ(Bu)(s)ds

has a pseudo-invertible operator W̃−1 which takes values in L2([0, T ], U)\KerW

and there exist positive constants M1 and M2 such that ‖B‖ ≤ M1 and ‖W̃−1‖
≤ M2;

(H8) |F (t, x)|2 = sup{|v|2 : v ∈ F (t, x)} ≤ η(t)Ψ((|x|2)) for almost all

t ∈ [0, T ] and x ∈ H, where η ∈ L1([0, T ],R+) and Ψ : R
+ → (0,∞) is

continuous concave and increasing, moreover, there exists a positive L such

that
(1− c4)L

c3 + c5Ψ(L)
∫ T

0
η(s)ds

> 1,

where

c3 = 8M2e2|ω|T (E|x0|
2 + L) + 4M4e2|ω|TTc2

+ 4M4M2
1 e

2|ω|TT 2M2
2

[
8(E|x1|

2 + L) + 8e2|ω|T (E|x0|
2 + L)

+ 4M4e2|ω|TTc2

]
,

c4 = 4M4e2|ω|TTc1 + 4M4M2
1 e

2|ω|TT 2M2
2 4M

4e2|ω|TTc1,

c5 = 4M4Te2|ω|T + 4M4M2
1 e

2|ω|TT 2M2
2 4M

4Te2|ω|T .

Then problem (4.1) is controllable on [0, T ].
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Proof. Using hypothesis (H7) for an arbitrary x(·) and x1 ∈ L2(Ω, D(A)),
define the control

ux(t) = W̃−1

[
Bλ(x1 − θ(x)) − S′(T )Bλ(x0 − θ(x)) −

∫ T

0

S′(T − s)Bλf(s)ds

−

∫ T

0

S′(T − s)Bλg(s, x(s))dW (s)

]
(t),

where f ∈ NF,x.
Consider the multivalued map Φ : C0 → P(C0) defined by

(Φx)(t) =

{
h ∈ C0 : Bλh(t) = S′(t)Bλ(x0 − θ(x)) +

∫ t

0

S′(t− s)Bλf(s)ds

+

∫ t

0

S′(t− s)BλBux(s)ds

+

∫ t

0

S′(t− s)Bλg(s, x(s))dW (s), t ∈ [0, T ]

}
,

where f ∈ NF,x.
Since limλ→∞ Bλh = h for h ∈ C0, it is clear that the fixed points of Φ are

integral solutions to problem (4.1). Thus if we prove Φ has one fixed point,
then the problem (4.1) is controllable on [0, T ]. We still use Theorem 2.7
to prove Φ has a fixed point. The proofs that Φ is a completely continuous
multivalued map, u.s.c., with convex closed values are similar to the proof in
Theorem 3.3 and are omitted. We only prove that the set U = {x ∈ C0 : δx ∈
Φx for some δ > 1} is bounded.

Let x ∈ U , then δx ∈ Φx for some δ > 1. Thus there exists f ∈ NF,x such
that for t ∈ [0, T ],

Bλx(t)= δ−1S′(t)Bλ(x0 − θ(x)) + δ−1

∫ t

0

S′(t− s)Bλf(s)ds

+ δ−1

∫ t

0

S′(t− s)BλBux(s)ds+ δ−1

∫ t

0

S′(t− s)Bλg(s, x(s))dW (s).

From (H4), (H5) and (H7), we have that for each t ∈ [0, T ],

E|x(t)|2

= lim
λ→∞

E

∣∣∣∣δ
−1S′(t)Bλ(x0 − θ(x)) + δ−1

∫ t

0

S′(t− s)Bλf(s)ds

+ δ−1

∫ t

0

S′(t− s)BλBux(s)ds+ δ−1

∫ t

0

S′(t− s)Bλg(s, x(s))dW (s)

∣∣∣∣
2

≤ lim
λ→∞

4|S′(t)|2E|Bλ(x0 − θ(x))|2 + 4M4e2|ω|TT

∫ t

0

E|f(s)|2ds

+ 4 lim
λ→∞

E

∣∣∣∣
∫ t

0

S′(t− s)BλBux(s)ds

∣∣∣∣
2

+ 4M4e2|ω|T

∫ t

0

E|g(s, x(s))|2ds
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≤ 8M2e2|ω|T (E|x0|
2 + L) + 4M4Te2|ω|T

∫ t

0

η(s)Ψ(E|x(s)|2)ds

+4M4e2|ω|T

∫ t

0

(c1E(|x(s)|2)+ c2)ds+4 lim
λ→∞

E

∣∣∣∣
∫ t

0

S′(t− s)BλBux(s)ds

∣∣∣∣
2

.

On the other hand, we have

lim
λ→∞

E

∣∣∣∣
∫ t

0

S′(t− s)BλBux(s)ds

∣∣∣∣
2

≤ lim
λ→∞

M4Te2|ω|TM2
1

∫ t

0

E|ux(s)|
2ds

≤ M4M2
1 e

2|ω|TT 2M2
2

[
8(E|x1|

2 + L) + 8e2|ω|T (E|x0|
2 + L)

+ 4M4e2|ω|TT

∫ T

0

E|f(s)|2ds+ 4M4e2|ω|T

∫ T

0

E|g(s, x(s))|2ds

]

≤ M4M2
1 e

4|ω|TT 2M2
2

[
8(E|x1|

2 + L) + 8e2|ω|T (E|x0|
2 + L)

+ 4M4Te2|ω|T

∫ T

0

η(s)Ψ(E|x(s)|2)ds+ 4M4e2|ω|T

∫ T

0

(c1E|x(s)|2 + c2)ds

]
.

Then we have that

E|x(t)|2 ≤ 8M2e2|ω|T (E|x0|
2 + L) + 4M4Te2|ω|T

∫ t

0

η(s)Ψ(E|x(s)|2)ds

+ 4M4e2|ω|T

∫ t

0

(c1E(|x(s)|2) + c2)ds

+ 4M4M2
1 e

2|ω|TT 2M2
2

[
8(E|x1|

2 + L) + 8e2|ω|T (E|x0|
2 + L)

+ 4M4Te2|ω|T

∫ T

0

η(s)Ψ(E|x(s)|2)ds

+ 4M4e2|ω|T

∫ T

0

(c1E(|x(s)|2) + c2)ds

]
.

In view of ‖x‖2 = sup0≤t≤T E|x(t)|2, we have

‖x‖2

≤ 8M2e2|ω|T (E|x0|
2 + L) + 4M4Te2|ω|T

∫ T

0

η(s)Ψ(‖x‖2)ds

+ 4M4e2|ω|T

∫ T

0

(c1(‖x‖
2) + c2)ds+ 4M4M2

1 e
2|ω|TT 2M2

2

[
8(E|x1|

2 + L)

+ 8e2|ω|T (E|x0|
2 + L) + 4M4Te2|ω|T

∫ T

0

η(s)Ψ(‖x‖2)ds



EXISTENCE AND CONTROLLABILITY RESULTS 57

+ 4M4e2|ω|T

∫ T

0

(c1(‖x‖
2) + c2)ds

]

= 8M2e2|ω|T (E|x0|
2 + L) + 4M4e2|ω|TTc2

+ 4M4M2
1 e

2|ω|TT 2M2
2

[
8(E|x1|

2 + L) + 8e2|ω|T (E|x0|
2 + L)

+ 4M4e2|ω|TTc2

]

+

[
4M4Te2|ω|T + 4M4M2

1 e
2|ω|TT 2M2

2 4M
4Te2|ω|T

]
Ψ(‖x‖2)

∫ T

0

η(s)ds

+

[
4M4e2|ω|TTc1 + 4M4M2

1 e
2|ω|TT 2M2

2 4M
4e2|ω|TTc1

]
‖x‖2

= c3 + c4‖x‖
2 + c5Ψ(‖x‖2)

∫ T

0

η(s)ds.

Then we have
(1 − c4)‖x‖

2

c3 + c5Ψ(‖x‖2)
∫ T

0
η(s)ds

≤ 1.

Using (H8) and concavity of Ψ, we obtain there exists some constant L such
that ‖x‖2 ≤ L. This shows that U is bounded. �
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