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REIDEMEISTER ZETA FUNCTION
FOR GROUP EXTENSIONS

PETER WONG

ABSTRACT. In this paper, we study the rationality of the Reide-
meister zeta function of an endomorphism of a group extension. As
an application, we give sufficient conditions for the rationality of
the Reidemeister and the Nielsen zeta functions of selfmaps on an
exponential solvmanifold or an infra-nilmanifold or the coset space
of a compact connected Lie group by a finite subgroup.

1. Introduction

A continuous selfmap f : M — M on a compact manifold M gener-
ates a discrete (semi-) dynamical system {f"} given by the n-th iterates
of f for all natural number n. In 1965, adapting the Hasse-Weil zeta
function from algebraic geometry, Artin and Mazur [1] introduced the
first dynamical zeta function for a selfmap f on a compact manifold as

o0 .
#Fix(f"
1) (r(2) = exp (30 FEELD) )
n=1 n
provided #Fix(f") < oo for all n. Following [1], Smale [14] introduced
a homological (Lefschetz) zeta function Ls(z) of a selfmap f on a topo-
logical space given by

oo
_ L(f") »
(2) Ls(2) —exp(nz1 — )
where L(f") denotes the Lefschetz number of the n-th iterate of f.
Unlike {f(z), the Lefschetz zeta function L(z) is always rational. Other
dynamical zeta functions similar to L(z) were introduced subsequently
by Franks, Fried, and Ruelle, among others. In [3], Fel’shtyn introduced,
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from the Nielsen fixed point theory viewpoint, the Reidemeister and the
Nielsen zeta functions given by

z)—exp(iR z"); Nf(z)zexp(i]—v(—jﬁz”)

n=1 n=1

respectively, by replacing L(f™) in (2) with the Reidemeister number
R(f™) and with the Nielsen number N(f"). While the Lefschetz zeta
function is more computable and is always rational, the Nielsen zeta
function is closer to the original dynamical zeta function of Artin-Mazur
in the sense that the Nielsen number of f™ measures the geometric size,
rather than the homological size, of the n-periodic points of f.

Recall from topological fixed point theory, the fixed point set Fixf =
{z € X|f(z) = z} is partitioned into fixed point classes each of which
has an integer-valued fixed point index. The Nielsen number N(f)
of f is defined to be the number of (essential) fixed point classes of
non-zero index. If X is a manifold of dimension dimX > 3, then
N(f) = min{#Fixglg ~ f}. On the other hand, the Reidemeister
number R(f), a more computable homotopy invariant defined at the
fundamental group level, is an upper bound for N(f). Under the so-
called Jiang condition on X or for more general Jiang-type spaces such
as nilmanifolds and coset spaces of the form G/K where K is a finite
subgroup of a compact connected Lie group G, N(f) = 0if L(f) =0

and N(f) = R(f) if L(f) # 0.

In a series of papers (see [4], [5], [6] and [2]), Fel’shtyn and others
studied the rationality, among other properties, of R¢(z) and of N¢(z).
It is known that Rf(z) is rational if f is eventually commutative; 7y (X)
is torsion free nilpotent; or a direct product of a finite group and a free
abelian group. Moreover, if R is the radius of convergence of N¢(z) for a
selfmap f : X — X of a finite polyhedron X, then 1 > R > exp(~h) > 0
where h := inf{h(g)lg ~ f} and h{g) denotes the topological entropy
of the map g. Thus, the Nielsen zeta function N¢(z) provides a lower
bound for the topological entropy, which is widely used as a measure of
complexity in the theory of dynamical systems, in the homotopy class
of f. If ¢ denotes the group endomorphism induced by f on the fun-
damental group, then R(f) = R(p) and Rf(2) = R,(z). Let ¢ be an
endomorphism of a group extension such that the following diagram is
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commutative

1 - H LA T P, Q y 1
3) /| |

1 L H g B, Q — 1

where ¢’ = ¢|n. Then R,(z) is rational provided the extension admits
a normal splitting (see section 2.7 of [2]). Under such condition, the
product formula R(p™) = R(¢'")- R(¥") holds for each n and thus R,(z)
is the convolution product R, (z)*Rp(z). This approach allowed us [6] to
show that R, (z) is rational if the group = is finitely generated torsion free
nilpotent. Topologically, the normal splitting condition is similar to the
so-called Fadell splitting condition of an orientable fibration under which
the product formula for the Nielsen numbers holds (see [11]). If R(f") =
N(f™) for each positive integer n, then the Nielsen zeta function and
the Reidemeister zeta function coincide and hence rationality of Rs(z)
would imply rationality of N¢(z).

The objective of this paper is to give sufficient conditions for the
rationality of the Reidemeister and of the Nielsen zeta functions while
relaxing the normal splitting hypothesis. By making use of an addition
formula for the Reidemeister numbers, we apply to the so-called Mostow
fibration of an exponential solvmanifold to obtain rationality of R, (z)
and hence of R¢(z). When the quotient group @ is finite, we apply the
addition formula to maps of coset spaces of the form G/K where K is
a finite subgroup of a compact connected Lie group G and to maps of
infra-nilmanifolds.

Basic reference on Nielsen fixed point theory is [11] and [2] gives an
updated survey on Reidemeister and Nielsen zeta functions.

2. Reidemeister numbers and rationality of R,(z)

In this section, we give a general addition formula for the Reidemeis-
ter number of an endomorphism of a group extension. Similar formula
for the Nielsen number has been obtained for fiber-preserving maps in
[10]. Sufficient conditions for R,(z) to be rational are given. Our al-
gebraic approach to Reidemeister classes and numbers follows that of
[7].

Let ¢ : @ — m be a group endomorphism and let 7 act on 7 via
cea s cgoap(o)~t. The orbits of this action form a set R (), called the
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set of Reidemeister classes. The Reidemeister number R(yp) of ¢ is the
cardinality of R(yp).

Given the commutative diagram (3), the homomorphisms i and p
induce functions 7 and p respectively, yielding the following sequence of
sets R ~

R(¢) = R(9) & R(P)
such that 7 is surjective and (R(¢')) = p~1([I]) where [1] is the Reide-
meister class of the identity T € Q.

The fixed subgroup Fixp = {@ € Q|g(@) = @} acts on R(y') via
0 e8] — [08p(871)] where 8 € p~1(1),0 € p~1(6),0 € R(¢') so that
Fixg = 1 = ¢ is injective. Let 7o(8) = aBa~L. Then for every @ € Q,
the following is commutative

1 H-—tsr-2.,0Q 1
(4) wp’l Tan TE@l
1 H-', - P,0 1

where a € p~(@),i, = i and p, = p. Thus we have the induced maps
1o and P, and the sequence

R(7a¢') *> R(7ap) ¥ R(7a%P).
It follows from (8] that there is a bijection
R(p) — [I R(a¥)).
[@eR(@)
The following is a special case of the addition formula for Reidemeister
coincidence numbers obtained in [8].

PROPOSITION 1. Given the commutative diagram (3), if the fixed
subgroup Fix r5p is trivial for all @ € Q, then

(5) R(p)= > R(ray).
[EleR(®)

Now we present the main result of the section, proving rationality of
R,(z) by assuming the addition formula (5).

THEOREM 2. Given the commutative diagram (3), suppose that for
alln > 1, R(¢™) < oo and the addition formula (5) holds. If {J,, R(?")
is represented by a finite subset of Q or R((1o¢')™) is independent of
a, and if R, (z) is rational for all o« € p~(w),[a] € U, R(¥"), then
R,(z) is rational.
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Proof. Since R(¢™) < 00, R((t5%)") < oo. Thus, by the rationality
of R,,/(2), for every [a;] € R(7a®), there exist a finite set of complex

numbers fig; 1, -« hay,p; ANA Va; 1y -« . 5 Vay,q Such that
g i
R((ra;#)™) = Y (Varsi)™ = D _ (B )™

Under the assumption on |J, R(¥") and on R((7o¢’)"), the addition
formula (5) implies that R(¢™) can be written in the form

ST
for a finite set of complex numbers {a,,bs}. Here, {a;} = {tq, ;} and
{bs} = {va,,j}- Taking the logarithmic derivative of R,(2) yields

6 R,( = R(yp

6) w Bl = S

On the other hand, the logarithmic derivative of
[[.(1—arz)

ILQ

is equal to

ﬁz. (glog(l - arz) - glog(l —bsz))
=z<1:‘:,.z>-2<1:”zz>
~Zb Zb Zar Zar
~Z(Zb n Zar
:ZR ™)

which coincides with the right hand side of (6). It follows that

— Hr(l — a"'z)
Bole) = .0 5.2)

and hence is a rational function. ]
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3. Applications

In this section, we apply Theorem 2 to prove rationality of Rs(z) and
of N¢(z) for selfmaps of exponential solvmanifolds, of infra-nilmanifolds
and of certain coset spaces of compact connected Lie groups. For the
rest of this paper, we assume that R(z) is well defined, i.e., R(f™) < o0
for all positive integer n.

Recall that a solvmanifold is simply the homogeneous coset space
of the form M = G/T where G is a connected and simply connected
solvable Lie group and T is a closed subgroup (not necessarily discrete).
We only consider compact solvmanifolds so we assume that I is cocom-
pact. A solvmanifold M is called exponential if the exponential map
exp : g — ( is surjective, where g denotes the Lie algebra of G. Tt
is well-known that every solvmanifold M fibers over a torus T' with a
nilmanifold N as typical fiber. Such a fibration N «— M — T is called a
Mostow fibration of M. Furthermore, given such a fibration p: M — T,
every selfmap f : M — M is homotopic to a fiber preserving map
g : p — p with induced map §g. The fiber-preserving map g induces
the commutative diagram (3) from the homotopy exact sequence of fi-
bration. Although solvmanifolds are not Jiang-type spaces in general,
the equality N(f) = R(f) holds when R(f) < oo (in fact, it holds for
coincidences of selfmaps of a solvmanifold [8]).

It is shown in [12] that for b € Fixg, the Lefschetz number L(gs) of
9 = glp-1(») is independent of b. Since the fiber is a nilmanifold, we
have |L(gy)] = N{g») = R(gs). Since R(g) < oo, R(g) must also be
finite. The base T is a torus so R(g) < co = Fix(gy) = 1 and hence
by Proposition 1, the addition formula holds. Now the fact that the
Reidemeister number on the fiber is independent of the basepoint b is
equivalent to R((74¢')) being independent of a so Theorem 2 applies.
Thus, we have just proved the following

THEOREM 3. Let M be a compact exponential solvmanifold. For any
selfmap f : M — M, Rs(z) is rational and coincides with Ny(z).

REMARK 1. Exponential solvmanifolds include the class of all nil-
manifolds. Thus, Theorem 3 enlarges the class of manifolds for which
R¢(z) and Ny(z) are always rational for any selfmap f.

In the case where Q is finite, the commutative diagram (3) may also
arise from considering the exact sequence of homotopy groups of finite
covers and lifts.
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In [5], Fel’shtyn and Hill asked whether some power of R(z) is ra~
tional when f is any selfmap of an infra-nilmanifold, or equivalently an
almost flat manifold. The fundamental group of an infra-nilmanifold is
virtually (or almost) nilpotent which has polynomial growth in the sense
of Gromov. Next, we give a partial answer to their conjecture.

It is well-known that an infra-nilmanifold M is finitely covered by
a nilmanifold. By extending Bieberbach’s rigidity theorem to infra-
nilmanifolds, Lee [13] applied his rigidity result to fixed point theory.
In particular, he showed (see Theorem 2.2 of [13]) that every selfmap
f MM can b be lifted to a selfmap f M — M on a finite cover
M of M where M is a nilmanifold. This allows us to obtain, at the
fundamental group level, the commutative diagram (3).

THEOREM 4. Let f : M — /]YI be a selfmap on ag\infra;x\lilmanifold
]/VI\ . There exist a finite cover M of M and a lift f : M — M of f with
M a nilmanifold. Let H denote the fundamental group of M , ™ denote
that of M and @) the quotient group. If Fixrzp = 1 for all @ € Q) where
¢ denotes the homomorphism induced by f, then both Rs(z) and N¢(z)
are rational.

Proof. The rationality of R¢(z) follows from Proposition 1 and The-
orem 2. Using the addition formula for Reidemeister numbers and the
fact that the Reidemeister classes in the fibers, which are nilmanifolds,
must be essential, we conclude that the Reidemeister classes of f™ must
also be essential. Thus N(f") = R(f") and hence R¢(z) = Ny(z). O

The final application of Theorem 2 is for selfmaps of the coset space
M = G/K of a compact connected Lie group G modulo a finite subgroup
K. It was shown in [15] that such a space is of Jiang-type so that for
any selfmap f : M — M, L(f) # 0 = N(f) = R(f). Hence, R¢(z) is
well-defined and is equal to N;(z) provided L(f") # 0 for all n.

THEOREM 5. Let M = G/K be the coset space of a compact con-
nected Lie group G and K be a finite subgroup. Forany map f : M — M
such that fu(pu(m1(G))) C pu(m1(G)), if Fix 757# =1forallad € K
where f, : K — K denotes the homomorphism induced by f, then
Ry¢(z) is rational and is equal to Ny(z).

Proof. The condition fu(px(71(G))) C px(71(G)) guarantees that f

can be lifted to a map f : G — G. Now, we proceed as in the proof of
Theorem 4. O
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REMARK 2. In both Theorem 4 and Theorem 5, the hypothesis on
the fix-subgroup can be satisfied, for example, when ¢(7) C H in the
diagram (3).

4. The Klein bottle

In this final section, we illustrate that our main results in section
3 give sufficient but not necessary conditions for the rationality of the
Reidemeister zeta function. In particular, we show that the Nielsen zeta
function on the Klein bottle is always rational without any additional
hypotheses on the map. We shall examine the Klein bottle both as a
solvmanifold and as an infra-nilmanifold.

Let K be the Klein bottle and 7 = m1(K) be the fundamental group
of K. It is well-known that 7 has the following group presentation

7 = {a, blaba = b).

Let Ms be the group of all rigid motions of R2. Every ¢ € My can be
represented by an ordered pair (m, s) with m € Oz (rotation) and s € R?
(translation). Equivalently, o can be represented by a 3 x 3 matrix of

the form
_ m S
7=\0 1

so that the composition of rigid motions will simply be the usual ma-
trix multiplication. With this representation, we can consider 7 as a
subgroup of My generated by

10 0 1 0 %
a=10 1 —% and b=10 -1 3
0 0 1 0 0 1

The rotational part of 7 is given by r: m — Oz via

r (™ %) =m
o 1) "
For the Klein bottle,

=100 %)==

Thus, 7 is the torsion free extension given by
/I iy

with the nontrivial action of Zy on Z2 represented by (§ % ).
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For any endomorphism ¢ : # — m, there exist integers u, v, w such
that ¢(a) = a%;¢(b) = a¥b*. Let f : K — K be a map with induced
homomorphism ¢ : # — 7. Halpern [9] showed that the Nielsen number
of f™ is given by

NG = {an ~Dl Huo

[w™ — 1| otherwise.

It is easy to see that Ny(z) is always a rational function. Moreover,
if Ry(z) is well-defined then it coincides with Ny(z) since K is a solv-
manifold.

Suppose f is a map with induced homomorphism ¢ such that p(a) =
1 and p(b) = b3. Since the kernel ker r is easily seen to be the free abelian
group generated by a2 and b2, the endomorphism ¢ maps ker r to itself
so it induces @ on the quotient r(mw) & Zy. Note that r(b) = —1 and
®(—1) = —1 so that Fix % # 1. Thus, the hypothesis of Theorem 4 is not
satisfied. On the other hand, it is easy to see the Reidemeister numbers
on ker r are all finite and thus R(p) < oco. It follows that Rs(z) = Ny(z)
is rational. This shows that the conditions for rationality of R¢(z) and
therefore for Nf(z) given in Theorem 4 are sufficient but not necessary.
Furthermore, since K is not an exponential solvmanifold, Theorem 3 is
not applicable.
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