• 제목/요약/키워드: fixed point theorem.

Search Result 534, Processing Time 0.029 seconds

EXISTENCE AND BOUNDEDNESS OF SOLUTIONS FOR VOLTERRA DISCRETE EQUATIONS

  • Choi, Sung Kyu;Goo, Yoon Hoe;Koo, Nam Jip
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.19 no.3
    • /
    • pp.237-244
    • /
    • 2006
  • In this paper, we examine the existence and bounded- ness of the solutions of discrete Volterra equations $$x(n)=f(n)+\sum_{j=0}^{n}g(n,j,x(j))$$, $n{\geq}0$ and $$x(n)=f(n)+\sum_{j=0}^{n}B(n,j)x(j)$$, $n{\geq}0$.

  • PDF

MODIFIED MANN'S ALGORITHM BASED ON THE CQ METHOD FOR PSEUDO-CONTRACTIVE MAPPINGS

  • Yao, Yonghong;Zhou, Haiyun;Liou, Yeong-Cheng
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.5_6
    • /
    • pp.1499-1506
    • /
    • 2010
  • IIn this paper, we suggest and analyze a modified Mann's algorithm based on the CQ method for pseudo-contractive mappings in Hilbert spaces. Further, we prove a strong convergence theorem according to the proposed algorithm for pseudo-contractive mappings.

REFLECTED BSDE DRIVEN BY A L$\acute{E}$VY PROCESS WITH STOCHASTIC LIPSCHITZ COEFFICIENT

  • Lu, Wen
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.5_6
    • /
    • pp.1305-1314
    • /
    • 2010
  • In this paper, we deal with a class of one-dimensional reflected backward stochastic differential equations driven by a Brownian motion and the martingales of Teugels associated with an independent L$\acute{e}$vy process having a stochastic Lipschitz coefficient. We derive the existence and uniqueness of solutions for these equations via Snell envelope and the fixed point theorem.

Stability Criterion for Volterra Type Delay Difference Equations Including a Generalized Difference Operator

  • Gevgesoglu, Murat;Bolat, Yasar
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.1
    • /
    • pp.163-175
    • /
    • 2020
  • The stability of a class of Volterra-type difference equations that include a generalized difference operator ∆a is investigated using Krasnoselskii's fixed point theorem and some results are obtained. In addition, some examples are given to illustrate our theoretical results.

EXISTENCE RESULTS FOR VECTOR NONLINEAR INEQUALITIES

  • Lee, Suk-Jin;Lee, Byung-Soo
    • Communications of the Korean Mathematical Society
    • /
    • v.18 no.4
    • /
    • pp.737-743
    • /
    • 2003
  • The purpose of this paper is to consider some existence results for vector nonlinear inequalities without any monotonicity assumption. As consequences of our main result, we give some existence results for vector equilibrium problem, vector variational-like inequality problem and vector variational inequality problems as special cases.

MULTIPLICITY RESULTS OF POSITIVE SOLUTIONS FOR SINGULAR GENERALIZED LAPLACIAN SYSTEMS

  • Lee, Yong-Hoon;Xu, Xianghui
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1309-1331
    • /
    • 2019
  • We study the homogeneous Dirichlet boundary value problem of generalized Laplacian systems with a singular weight which may not be in $L^1$. Using the well-known fixed point theorem on cones, we obtain the multiplicity results of positive solutions under two different asymptotic behaviors of the nonlinearities at 0 and ${\infty}$. Furthermore, a global result of positive solutions for one special case with respect to a parameter is also obtained.

ON THE STABILITY OF RECIPROCAL-NEGATIVE FERMAT'S EQUATION IN QUASI-β-NORMED SPACES

  • Kang, Dongseung;Kim, Hoewoon B.
    • The Pure and Applied Mathematics
    • /
    • v.26 no.2
    • /
    • pp.85-97
    • /
    • 2019
  • In this paper we introduce the reciprocal-negative Fermat's equation induced by the famous equation in the Fermat's Last Theorem, establish the general solution in the simplest cases and the differential solution to the equation, and investigate, then, the generalized Hyers-Ulam stability in a $quasi-{\beta}-normed$ space with both the direct estimation method and the fixed point approach.

A GENERALIZED APPROACH OF FRACTIONAL FOURIER TRANSFORM TO STABILITY OF FRACTIONAL DIFFERENTIAL EQUATION

  • Mohanapriya, Arusamy;Sivakumar, Varudaraj;Prakash, Periasamy
    • Korean Journal of Mathematics
    • /
    • v.29 no.4
    • /
    • pp.749-763
    • /
    • 2021
  • This research article deals with the Mittag-Leffler-Hyers-Ulam stability of linear and impulsive fractional order differential equation which involves the Caputo derivative. The application of the generalized fractional Fourier transform method and fixed point theorem, evaluates the existence, uniqueness and stability of solution that are acquired for the proposed non-linear problems on Lizorkin space. Finally, examples are introduced to validate the outcomes of main result.

EXISTENCE, UNIQUENESS AND HYERS-ULAM-RASSIAS STABILITY OF IMPULSIVE FRACTIONAL INTEGRO-DIFFERENTIAL EQUATION WITH BOUNDARY CONDITION

  • MALAR, K.;GOWRISANKAR, C.
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.5_6
    • /
    • pp.1089-1103
    • /
    • 2022
  • This paper focuses on the existence and uniqueness outcome for fractional integro-differential equation (FIDE) among impulsive edge condition and Hyers-Ulam-Rassias Stability (HURS) by using fractional calculus and some fixed point theorem in some weak conditions. The outcome procured in this paper upgrade and perpetuate some studied solutions.