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EXISTENCE AND BOUNDEDNESS OF SOLUTIONS
FOR VOLTERRA DISCRETE EQUATIONS

Sung Kyu Choi*, Yoon Hoe Goo**, and Nam Jip Koo***

Abstract. In this paper, we examine the existence and bounded-
ness of the solutions of discrete Volterra equations

x(n) = f(n) +

n∑
j=0

g(n, j, x(j)), n ≥ 0

and

x(n) = f(n) +

n∑
j=0

B(n, j)x(j), n ≥ 0.

1. Introduction

Volterra difference equations arise in the mathematical modeling of
some real phenomena, and also in numerical schemes for solving differ-
ential and integral equations.

Baker and Song [1] established the existence and uniqueness of the so-
lutions of discrete Volterra equations via the discrete Volterra operators
and the fixed point theorems. Moreover, they investigated the stability
properties in the various sequence spaces in [5], using the representation
of the solution by the resolvent for the kernel in Volterra equations.

In this paper, we examine the existence and boundedness of the so-
lutions of discrete Volterra equations

x(n) = f(n) +
n∑

j=0

g(n, j, x(j)), n ≥ 0
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and

x(n) = f(n) +
n∑

j=0

B(n, j)x(j), n ≥ 0.

2. Some sequence spaces

Let (X, | · |) be a Banach space and Z+ = {0, 1, 2, · · · } be the set of
all nonnegative integers. We denote by S(X) the set of sequences in X:

S(X) = {x : Z+ → X : x(n) ∈ X, n ∈ Z+}.
We employ the notation

x = {x(n)}∞n=0,

|x|p = (
∞∑

n=0

|x(n)|p) 1
p , 1 ≤ p < ∞,

|x|∞ = sup
n≥0

|x(n)|,

and define the Banach space

Sp(X) = {x ∈ S(X) : |x|p < ∞}, 1 ≤ p ≤ ∞,

consisting of elements of S(X) with the norm |x|p. Also, we define the
ball with radius r centered on the null sequence :

Bp(X, r) = {x ∈ Sp(X) : |x|p ≤ r}.
The corresponding ball with radius r but centered on y will be denoted
Bp(y; r) : z ∈ Bp(y; r) if and only if z − y ∈ Bp(X, r). The case where
X = Rd, d-dimensional real Euclidean space,

lp = lp(Rd) = Sp(Rd).

Thus lp denotes the Banach space comprising sequences of vectors with
finite norm |x|p where

|x|p =

( ∞∑

n=0

|x(n)|p
) 1

p

, 1 ≤ p < ∞,

|x|∞ = sup
n≥0

|x(n)|.

We denote by Sm(X),m ≥ 0, the linear space of terminating sequences

{x(n)}m
n=0 : x(0), x(1), · · · , x(m)
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and by Sp
m(X) the corresponding Banach space with norm | · |pm :

|x|pm =

(
m∑

n=0

|x(n)|p
) 1

p

, 1 ≤ p < ∞,

|x|∞m = sup
0≤n≤m

|x(n)|.

3. Existence

Definition 3.1. An operator V : S(X) → S(X) is called a (discrete)
Volterra operator if there exists a family of mappings vi : Si → X, i ≥ 0,
such that, for each φ = {φ(n)}∞n=0 ∈ S(X)

(3.1) (V φ)(n) = vn(φ(0), φ(1), · · · , φ(n)), n = 0, 1, · · · .

The mapping vn is called the n-th coordinate mapping of V .

Example 3.2. We can consider the following Volterra operators on
S(Rd):

(3.2) (V φ)(n) = f(n) +
n∑

j=0

g(n, j, φ(j)), n ≥ 0,

where g : Z+ × Z+ × Rd → Rd and f = {f(n)}∞n=0 ∈ S(Rd),

(3.3) (V φ)(n) = f(n) +
n∑

j=0

B(n, j)g(j, φ(j)), n ≥ 0,

where {B(n,m)}0≤m≤n, n ≥ 0, are d×d matrices and g : Z+×Rd → Rd,
and

(3.4) (V φ)(n) = f(n) +
n∑

j=0

g(n− j, φ(j)), n ≥ 0.

The mapping B : Z+×Z+ → Rd is called the kernel of V . The special
form (3.4) is called a nonlinear discrete Volterra operator of convolution
type.

We investigate the existence of solutions of Volterra equation

(3.5) x(n) = f(n) +
n∑

j=0

g(n, j, x(j)), n ≥ 0,

where f = {f(n)}∞n=0 ∈ S(Rd), g : Z+ × Z+ × Rd → Rd is a mapping.
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Remark 3.3. Equation (3.5) is a discrete analogue of the Volterra
integral equation

(3.6) x(t) = f(f) +
∫ t

0
g(t, s, x(s))ds,

where f is continuous on [0, a], a > 0, and g is continuous on [0, a] ×
[0, a]×B(f(t), b), b > 0 and Lipschitzian in x, i.e.,

|g(t, s, x)− g(t, s, y)| ≤ L|x− y|.
Here B(f(t), b) is an open ball with radius b > 0. Burton [2] use the
operator A : C([0, T ],Rn) → C([0, T ],Rn) defined by

(Aφ)(t) = f(t) +
∫ t

0
g(t, s, φ(s))ds,

where

T = min{a,
b

M
}, M = max |g(t, s, x)|,

to show that (3.6) has a unique solution on [0, T ].
Baker and Song [1] obtained one existence result for the Volterra

operator V on l∞(Rd) in the following.

Theorem 3.4. [1] Let V : l∞(Rd) → l∞(Rd) be a Volterra operator
that is bounded (namely there is a number M > 0 such that |V φ|∞ ≤ M
for all φ ∈ l∞(Rd)). If all the coordinate mappings of V are continuous,
then V has at least one fixed point in l∞(Rd).

This theorem follows from the well-known fixed point theorem for
finite dimensional spaces :

Theorem 3.5. [1] (i) Any continuous mapping of a convex subset Ω
of Rd into a bounded closed set inside Ω has one fixed point.

(ii) Any continuous mapping of Rd into a bounded subset of Rd has
a fixed point.

Now, we obtain the following result from Theorem 3.4 :

Theorem 3.6. For equation (3.5), assume that

(i) g(n, j, x) is continuous in x for every (n, j) ∈ Z+×Z+ and g(n, j) =
0 when j > n,

(ii) f ∈ l∞(Rd),
(iii) supn≥0

∑n
j=0 |g(n, j, x(j))| ≤ M for some number M > 0.

Then (3.5) has at least one bounded solution.
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Proof. Define a Volterra operator V : l∞(Rd) → l∞(Rd) by

(V x)(n) = f(n) +
n∑

j=0

g(n, j, x(j)), n ≥ 0.

Then we have

|(V x)(n)| ≤ |f(n)|+
n∑

j=0

|g(n, j, x(j))|

≤ |f |∞ + M.

Thus

|V x|∞ ≤ |f |∞ + M.

This implies that V is a bounded Volterra operator on l∞(Rd). Clearly,
each coordinate mapping vn : S∞n (Rd) → Rd is given by

vn(x) = f(n) +
n∑

j=0

g(n, j, x(j)), x ∈ S∞n (Rd),

and it is continuous on S∞n (Rd). Therefore, by Theorem 3.4, V has at
least one fixed point in l∞(Rd) and the fixed point is a bounded solution
of V .

Remark 3.7. To ensure the uniqueness of solution of (3.5), we use
the Contraction Mapping Theorem. If each coordinate mapping vi :
S∞i (Rd) → Rd is a contraction, then the Volterra operator V correspond-
ing to equation (3.5) is also a contraction since the exists a number ρ
such that 0 < ρ < 1 and

|(V φ)− (V ψ)|∞ ≤ ρ|φ− ψ|∞
for any φ, ψ ∈ l∞(Rd). Thus V has a unique fixed point in l∞(Rd) by
the Contraction Mapping Theorem.

4. Boundednesss

In this section, we examine the boundedness of solutions of discrete
Volterra equation

(4.1) x(n) = f(n) +
n∑

j=0

B(n, j)x(j), n ≥ 0.
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Definition 4.1. We define the fundamental matrices {Φ(n, m)} for
the kernel B in (4.1) as the unique solution of the equations

Φ(n,m) = I +
n∑

j=m

B(n, j)Φ(j,m), 0 ≤ m ≤ n,(4.2)

Φ(n,m) = I (the d× d identity matrix), 0 ≤ n ≤ m.

Lemma 4.2. [5, Lemma 2.12] The solution of (4.1) has the represen-
tation

(4.3) x(n) = Φ(n, 0)f(0) +
n∑

j=0

Φ(n, j)∇f(j),

where ∇f(j) = f(j)− f(j − 1) for n ≥ 1 and ∇f(0) = 0.

Definition 4.3. For φ = {φ(n)}∞n=0 ∈ S(X), we define

∇φ(n) = φ(n)− φ(n− 1), n ≥ 0

and
|φ|∇ = |φ(0)|+ |∇φ|∞.

Theorem 4.4. For (4.1), assume that

(i) |Φ(n, 0)| ≤ M for some M > 0,
(ii) supn≥0

∑n
j=0 |Φ(n, j)| ≤ M ,

(iii) |f |∇ ≤ C for some C > 0.

Then the solution x of (4.1) belongs to l∞(Rd).

Proof. From (4.3), we have

|x(n)| ≤ |Φ(n, 0)||f(0)|+
n∑

j=0

|Φ(n, j)|∇f(j)|

≤ M |f |∇ + M |f |∇ = 2M |f |∇
≤ 2MC.

Hence

|x|∞ = sup
n≥0

|x(n)| ≤ 2MC ≡ M ′.

Theorem 4.5. For (4.1), we assume that

(i) |∇f |p∇ ≤ C for some C > 0, 1 ≤ p < ∞,

(ii) (
∑∞

n=0(
∑n

j=0 |Φ(n, j)|q) p
q )

1
p = M < ∞ for some M > 0,
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where 1 ≤ p < ∞ and 1
p + 1

q = 1. Then for the solution x of (4.1),

x ∈ lp(Rd).

Proof. In view of (4.3), we have

|x(n)| ≤ |Φ(n, 0)||f(0)|+
n∑

j=0

|Φ(n, j)||∇f(j)|, n ≥ 1.

By the well-known Minkowski inequality and Hölder inequality, we ob-
tain
(

N∑

n=0

|x(n)|p
) 1

p

≤
(

N∑

n=0

|Φ(n, 0)||f(0)|p
) 1

p

+




N∑

n=0

n∑

j=0

|Φ(n, j)||∇f(j)|p



1
p

≤ |f(0)|




N∑

n=0




n∑

j=0

|Φ(n, 0)|q



p
q




1
p

+




N∑

n=0




n∑

j=0

|Φ(n, j)|q






p
q



n∑

j=0

|∇f(j)|p



1
p

≤ |f(0)|M + M |∇f |p
= M |∇f |p∇
≤ CM.

It follows that

|x|p =

( ∞∑

n=0

|x(n)|p
) 1

p

≤ CM.

This completes the proof.
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