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EXISTENCE AND BOUNDEDNESS OF SOLUTIONS
FOR VOLTERRA DISCRETE EQUATIONS

SuNG Kyu CHor*, YooN HOoE Goo**, AND Nam Jip Koo***

ABSTRACT. In this paper, we examine the existence and bounded-
ness of the solutions of discrete Volterra equations

z(n) = f(n) + Zg(n,j,x(j)), n>0

and

1. Introduction

Volterra difference equations arise in the mathematical modeling of
some real phenomena, and also in numerical schemes for solving differ-
ential and integral equations.

Baker and Song [1] established the existence and uniqueness of the so-
lutions of discrete Volterra equations via the discrete Volterra operators
and the fixed point theorems. Moreover, they investigated the stability
properties in the various sequence spaces in [5], using the representation
of the solution by the resolvent for the kernel in Volterra equations.

In this paper, we examine the existence and boundedness of the so-
lutions of discrete Volterra equations

z(n) = f(n) + > g(n,4,2(j)), n>0
7=0
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and

z(n) = f(n) + Y B(n,j)z(j), n > 0.
§=0

2. Some sequence spaces

Let (X,|-|) be a Banach space and Z; = {0,1,2,---} be the set of
all nonnegative integers. We denote by S(X) the set of sequences in X:
SX)={x:Zy - X: z(n)e X,n€Zi}.
We employ the notation

z = {z(n)}nlo
> 1
2, = O lz(m)")r, 1<p <o,
n=0
|zls = sup|z(n)],
n>0

and define the Banach space
SP(X)={z e S(X): |z|, <o}, 1 <p< oo,

consisting of elements of S(X) with the norm |z|,. Also, we define the
ball with radius r centered on the null sequence :

BP(X,r)={z e SP(X): |z|, <r}.

The corresponding ball with radius r but centered on y will be denoted
BP(y;r) : z € BP(y;r) if and only if 2 —y € BP(X,r). The case where
X = R%, d-dimensional real Euclidean space,

P = IP(RY) = SP(RY).

Thus [P denotes the Banach space comprising sequences of vectors with
finite norm |x|, where

i~ 5
oy = (zu(n)\p) <o
n=0

[Zloe = supla(n)].
n>0

We denote by Sy, (X),m > 0, the linear space of terminating sequences

{ZL‘(n) ZL:O : .T(O),Zv(l),"' 7x(m)
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and by S5, (X) the corresponding Banach space with norm | - |},

m 5
o (Z\mmnp) d<peo
n=0

|zl = sup [z(n)|.
0<n<m

3. Existence

DEFINITION 3.1. An operator V : S(X) — S(X) is called a (discrete)
Volterra operator if there exists a family of mappings v; : S; — X,i > 0,
such that, for each ¢ = {¢(n)}72, € S(X)

(3.1) (Vo) (n) = vn(9(0), ¢(1),- -+ ,0(n)),n=0,1,--- .
The mapping v, is called the n-th coordinate mapping of V.

ExAMPLE 3.2. We can consider the following Volterra operators on
S(RY):

(32) (Vo)(n +§jgng¢ ), n> 0,
where g : Zy x Z4 x R4 — R% and f = {f(n)}>2, € S(RY),
(3.3) (Vo) (n +§:Bng 9(3,6()), n >0,

where {B(n,m)}o<m<n,n > 0, are d x d matrices and g : Z4 x R? — R%,
and

(3.4) (Vo) (n +§jgn—% 7)), n > 0.

The mapping B : Zy x Z, — R% is called the kernel of V. The special
form (3.4) is called a nonlinear discrete Volterra operator of convolution

type.
We investigate the existence of solutions of Volterra equation

(3-5) z(n) = f(n) + Zg(n7j7x(j)), n =0,

where f = {f(n)}32, € S(RY),g:Zy x Zy x RY — R? is a mapping.
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REMARK 3.3. Equation (3.5) is a discrete analogue of the Volterra
integral equation

(3.6) Mﬂzﬂﬁ+ﬂg@&ﬂm%,

where f is continuous on [0,a],a > 0, and ¢ is continuous on [0,a] x
[0,a] x B(f(t),b),b > 0 and Lipschitzian in z, i.e.,
lg(t,s,2) — g(t, s,y)| < Llz —yl.

Here B(f(t),b) is an open ball with radius b > 0. Burton [2] use the
operator A : C([0,T],R") — C(]0,T],R™) defined by

M@@—f@+£9@&wwﬁ,

where
b
T = min{a, —}, M = max|g(t, s, x)|,

to show that (3.6) has a unique solution on [0, 7.
Baker and Song [1] obtained one existence result for the Volterra
operator V on [*°(R?) in the following.

THEOREM 3.4. [1] Let V : I®(RY) — [°°(RY) be a Volterra operator
that is bounded (namely there is a number M > 0 such that |V ¢|eo < M
for all ¢ € [°°(R?)). If all the coordinate mappings of V are continuous,
then V has at least one fixed point in [*°(R%).

This theorem follows from the well-known fixed point theorem for
finite dimensional spaces :

THEOREM 3.5. [1] (i) Any continuous mapping of a convex subset €2
of R% into a bounded closed set inside € has one fixed point.

(ii) Any continuous mapping of R¢ into a bounded subset of R? has
a fixed point.

Now, we obtain the following result from Theorem 3.4 :

THEOREM 3.6. For equation (3.5), assume that

(i) g(n,J,x) is continuous in x for every (n, j) € Z4 xXZ+ and g(n, j) =
0 when j > n,
(ii) fe€l®(RY,
(ili) supp>0 >_j— 9(n, j, 2(j))| < M for some number M > 0.
Then (3.5) has at least one bounded solution.
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Proof. Define a Volterra operator V' : 1°°(R) — [*°(R%) by
(Vz)(n) = f(n) + ig(n,j,fc(j)), n > 0.
Then we have B
(Va)(n)| < [f(n)] + i; l9(n, 4, 2())|
P

| floo + M.

IN

Thus
Vloo < |floo + M.

This implies that V is a bounded Volterra operator on [*° (]Rd). Clearly,
each coordinate mapping vy, : So°(R?) — R? is given by

vn(z) = f(n) + > g(n,4,2(j)), = € STRY),
j=0

and it is continuous on S°(R?). Therefore, by Theorem 3.4, V has at
least one fixed point in 1°°(R?) and the fixed point is a bounded solution
of V. O

REMARK 3.7. To ensure the uniqueness of solution of (3.5), we use
the Contraction Mapping Theorem. If each coordinate mapping v; :
S2°(R?) — R?is a contraction, then the Volterra operator V correspond-
ing to equation (3.5) is also a contraction since the exists a number p
such that 0 < p <1 and

(V@) = (V)| < pld — Yl

for any ¢, € [°°(R?). Thus V has a unique fixed point in 1*°(R%) by
the Contraction Mapping Theorem.

4. Boundednesss

In this section, we examine the boundedness of solutions of discrete
Volterra equation

(4.1) z(n) = f(n)+ Y _ B(n,j)z(j), n > 0.
=0
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DEFINITION 4.1. We define the fundamental matrices {®(n,m)} for
the kernel B in (4.1) as the unique solution of the equations

(4.2) ®(n,m) = I+ Z B(n,j)®(j,m), 0 <m <n,
j=m

®(n,m) = I (thed x d identity matrix), 0 < n < m.

LEMMA 4.2. [5, Lemma 2.12] The solution of (4.1) has the represen-
tation

(4.3) 2(n) = 0(n,0)£(0) + Y _ ®(n, /) V()

=0
where Vf(j) = f(j) — f(7 —1) forn > 1 and Vf(0) = 0.
DEFINITION 4.3. For ¢ = {¢(n)}22, € S(X), we define
Vé(n) = o(n) —¢(n—1), n >0

and
9]y = [9(0)] + [Vl
THEOREM 4.4. For (4.1), assume that
(i) |®(n,0)| < M for some M > 0,
(11) SUPy,>0 Z?:O |q)(n7.7)’ <M,
(iii) |f|v < C for some C > 0.
Then the solution x of (4.1) belongs to 1°°(R%).

Proof. From (4.3), we have

(1, 0)[|£(0)] + Y [@(n, )|V f ()]

=0
M|flv + M|f|lv = 2M|f|v
2MC.

|z(n)]

IN

<
<

Hence

|Z|0o = sup |z(n)| < 2MC = M.
n>0

THEOREM 4.5. For (4.1), we assume that
(i) |Vf§ < C for some C' > 0,1 < p < o0,
1
(i) (52o(Sfo (0, 5)[1) )7 = M < oo for some M >0,
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where 1 < p < oo and ;1) + % = 1. Then for the solution x of (4.1),
r € [P(RY).

Proof. In view of (4.3), we have

z(n)] < [®(n, 0)[[ (0 |+Z!‘I>nj IV n= 1

7=0

By the well-known Minkowski inequality and Holder inequality, we ob-
tain

<Z!<I>n0!|f )1 ZZIfI)nJHVf PIP

N P
(Z\fd?ﬂ!”) <
n=0 n=0 =0
e 2
N n q
< [FOI > |®(n, 0)]7
n=0 \ j=0
2 1
N n q n P
| el >_IVEG)IP
n=0 \ j=0 j=0
< [f(O)|M + M|V f[p
= M|V
< CM.
It follows that
o0 :
2l = [ Y lz()P | <CoM.
n=0
This completes the proof. O
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