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REFLECTED BSDE DRIVEN BY A LÉVY PROCESS WITH

STOCHASTIC LIPSCHITZ COEFFICIENT†

WEN LÜ

Abstract. In this paper, we deal with a class of one-dimensional reflected
backward stochastic differential equations driven by a Brownian motion
and the martingales of Teugels associated with an independent Lévy pro-
cess having a stochastic Lipschitz coefficient. We derive the existence and
uniqueness of solutions for these equations via Snell envelope and the fixed
point theorem.
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1. Introduction

El Karoui et al. [1] introduced the notion of one barrier reflected BSDE
(RBSDE in short), which is actually a backward equation but the solution is
forced to stay above a given obstacle. More precisely, a solution of such an
equation is a triple of processes (Y,Z,K) such that

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds+KT −Kt −
∫ T

t

ZsdBs, Yt ≥ St,

where the obstacle S is a given stochastic process. The increasing process K
is introduced to pushes the process Y upwards with minimal energy so that

it may remain above the obstacle S, i.e.
∫ T

0
(Yt − St)dKt = 0. This type of

BSDEs is motivated by pricing American options (see e.g. [2]) and studying the
mixed game problems(see e.g. [3], [4]). The existence and uniqueness theorem
of solution of RBSDE in [1] was proved under the Lipschitz assumption on the
coefficient.
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Recently, Nualart and Schoutens [5] gave a martingale representation theo-
rem associated to a Lévy process. Furthermore, they showed the existence and
uniqueness of solutions to BSDEs driven by Teugels martingales associated with
a Lévy process with moments of all orders in [6]. Following this way, Bahlali
et al. [7] established the existence and uniqueness of solution for BSDEs driven
by a Brownian motion and the martingales of Teugels associated with an inde-
pendent Lévy process, having a Lipschitz or a locally Lipschitz coefficient. As
a natural extension, Ren and Hu [8] showed the same result for the RBSDEs
driven by Lévy processes with Lipschitz coefficient.

However, the Lipschitz condition is too restrictive to be assumed in many
applications. Due to this limitation, many papers have devoted to relax the
Lipschitz condition (see e.g. [9], [10] and the references therein). El Karoui
and Huang [11] considered BSDEs driven by a general càdlàg martingale with
stochastic Lipschitz coefficient, they established a general result of existence and
uniqueness by strengthening the integrability conditions on the coefficient and
the terminal condition. Later, under the same assumptions on the coefficient,
Bender and Kohlmann [12] showed the same result for BSDEs driven only by
a Brownian motion. Motivated by the above works, the purpose of the present
paper is to consider a class of one-dimensional RBSDEs driven by Lévy processes
with stochastic Lipschitz coefficient. We try to get the existence and uniqueness
of solutions for those RBSDEs by means of the Snell envelope and the fixed
point theorem.

The rest of the paper is organized as follows. In Section 2, we introduce some
preliminaries including some spaces. Section 3 is devoted to prove the existence
and uniqueness of solutions to RBSDEs with stochastic Lipschitz coefficient.

2. Preliminaries

Let T > 0 be a given real number. We first introduce the following two
mutually independent processes:

• {Bt : t ∈ [0, T ]}: a standard Brownian motion in R;
• A R-valued Lévy process of the form Lt = bt + `t corresponding to a
standard Lévy measure ν satisfying the following conditions:

(i)
∫
R
(1 ∧ y2)ν(dy) < ∞,

(ii)
∫
]−ε,ε[c

eλ|y|ν(dy) < ∞, for every ε > 0 and for some λ > 0.

We denote by (Ω,F , P ) a complete probability space and Ft the filtration
generated by the Brownian motion B and the Lévy process defined above, i.e.

Ft = σ{Bs, 0 ≤ s ≤ t} ∨ σ{Ls, 0 ≤ s ≤ t} ∨ N ,

where N is the set of all P -null subsets. The Euclidean norm of a vector y ∈ Rn

will be defined by |y|.
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Let (at)t≥0 be a nonnegative Ft-adapted process, define

A(t) =

∫ t

0

a2(s)ds, 0 ≤ t ≤ T.

For β ≥ 0, let’s introduce the following spaces:

• L2(β, a) the space of FT -measurable random variables ξ such that

E[eβA(T )|ξ|2] < ∞.

• S2(β, a) the space of Ft-progressively measurable processes
{ψt : t ∈ [0, T ]} such that

E[eβA(T ) sup
0≤t≤T

|ψt|2] < ∞.

• H2(β, a) the space of predictable processes {ψt : t ∈ [0, T ]} such that

E

∫ T

0

eβA(t)|ψt|2dt < ∞.

• l2: the space of real valued sequences x = (xn)n≥1 such that

‖x‖2 =

∞∑

i=1

x2
i < ∞.

• H2(β, a; l2) the corresponding space of l2-valued processes
{ψt : t ∈ [0, T ]} such that

E

∫ T

0

eβA(t)‖ψt‖2dt =
∞∑

i=1

E

∫ T

0

eβA(t)|ψ(i)
t |2dt < ∞.

Let (H(i))i≥1 denote the Teugels martingales associated with a Lévy process
{Lt : t ∈ [0, T ]}. More precisely

H
(i)
t = ci,iY

(i)
t + ci,i−1Y

(i−1)
t + · · ·+ ci,1Y

(1)
t ,

where Y
(i)
t = L

(i)
t − E[L

(i)
t ] = L

(i)
t − tE[L

(i)
1 ] for all i ≥ 1 and L

(i)
t are so called

power-jump processes, i.e., L
(1)
t = Lt and L

(i)
t =

∑
0≤s≤t(∆Lt)

i for i ≥ 2. It was

shown in Nualart and Schoutens [6] that the coefficient ci,k correspond to the
orthonormalization of the polynomials 1, x, x2, . . . with respect to the measure
µ(dx) = x2ν(dx) + σ2δ0(dx):

qi−1 = ci,ix
i−1 + ci,i−1x

i−2 + · · ·+ ci,1.

We set

pi(x) = xqi−1(x) = ci,ix
i + ci,i−1x

i−1 + · · ·+ ci,1x.

The martingale (H(i))i≥1 can be chosen to be pairwise strongly orthonormal
martingales.

The following result is the general martingale representation theorem which
due to Bahlali et al. [7].
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Proposition 1. Let {Mt : t ∈ [0, T ]} be an Ft-adapted square integrable mar-
tingale. Then, there exist Z ∈ H2(β, a) and U ∈ H2(β, a; l2) such that

Mt = E[Mt] +

∫ t

0

ZsdBs +

∞∑

i=1

∫ t

0

U (i)
s dH(i)

s .

In this paper, we consider the following RBSDE:





Yt = ξ +
∫ T

t
f(s, Ys−, Zs, Us)ds+KT −Kt

− ∫ T

t
ZsdBs −

∑∞
i=1

∫ T

t
U

(i)
s dH

(i)
s , 0 ≤ t ≤ T,

Yt ≥ St, ∀ 0 ≤ t ≤ T a.s. and
∫ T

0
(Yt− − St−)dKt = 0, a.s.

(1)

where the coefficient f : Ω× [0, T ]×R×Rd×R → R is progressively measurable.
For β > 0, we make the following assumptions:
(H1) ∀t ∈ [0, T ], (yi, zi, ui) ∈ R × Rd × l2, i = 1, 2, there are three nonnegative
Ft-adapted processes µ(t), γ(t) and η(t) such that

|f(t, y1, z1, u1)− f(t, y2, z2, u2)| ≤ µ(t)|y1 − y2|+ γ(t)|z1 − z2|+ η(t)‖u1 − u2‖; (2)

(H2) ∃ ε > 0 such that a2(t) := µ(t) + γ2(t) + η2(t) ≥ ε;

(H3) ∀t ∈ [0, T ],
f(t, 0, 0, 0)

a ∈ H2(β, a).
We refer to (H1) as the stochastic Lipschitz condition on the coefficient f .

Furthermore, we assume:
(H4) The terminal value ξ ∈ L2(β, a);
(H5) The obstacle {St, 0 ≤ t ≤ T} is a rcll(right continuous with left lim-
its) progressively measurable real-valued process satisfying ST ≤ ξ a.s. and
E[sup0≤t≤T e2βA(t)(S+

t )2] < ∞ , where S+
t = max{St, 0}. Moreover, we assume

that its jumping times are inaccessible stopping times.
We now present the definition of the solutions for RBSDE (1).

Definition 1. Let β > 0 and a a nonnegative Ft-adapted process. A solution for
RBSDE (1) is a triple (Y, Z, U,K) satisfying (1) such that (Y, Z, U) ∈ S2(β, a)×
H2(β, a) × H2(β, a; l2) and K is continuous and increasing such that K0 = 0
and E|KT |2 < ∞.

3. Main results

3.1. A priori estimate

We first give a priori estimate of the solutions of RBSDE (1).

Lemma 1. Let β > 0 large enough and assume (H1)-(H5) hold, let
(Yt, Zt,Kt)0≤t≤T be a solution of RBSDE (1) with data (ξ, f, S). Then there
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exists a constant Cβ > 0 depending only on β such that

E

[
sup

0≤t≤T
eβA(t)|Yt|2 +

∫ T

0

eβA(s)(a2(s)|Ys|2 + |Zs|2 + ‖Us‖2)ds+ |KT |2
]

≤ CβE

[
eβA(T )|ξ|2 +

∫ T

0

eβA(s) |f(s, 0, 0, 0)|2
a2(s)

ds+ sup
0≤t≤T

e2βA(t)(S+
t )2

]
.

Proof. Applying Itô’s formula to eβA(t)|Yt|2, we have

eβA(t)|Yt|2 + β

∫ T

t

a2(s)eβA(s)|Ys|2ds+
∫ T

t

eβA(s)(|Zs|2 + ‖Us‖2)ds

= eβA(T )|ξ|2 + 2

∫ T

t

eβA(s)Ysf(s, Ys−, Zs, Us)ds+ 2

∫ T

t

eβA(s)YsdKs

− 2

∫ T

t

eβA(s)YsZsdBs − 2

∞∑

i=1

∫ T

t

eβA(s)YsU
(i)
s dH(i)

s

−
∞∑

i=1

∞∑

j=1

∫ T

t

eβA(s)U (i)
s U (j)

s d
(
[H(i),H(j)]s − 〈H(i),H(j)〉s

)

≤ eβA(T )|ξ|2 + β

2

∫ T

t

eβA(s)a2(s)|Ys|2ds+ 8

β

∫ T

t

eβA(s) |f(s, 0, 0, 0)|2
a2(s)

ds

+
8

β

∫ T

t

eβA(s)(a2(s)|Ys|2 + |Zs|2 + ‖Us‖2)ds+ 2

∫ T

t

eβA(s)YsdKs

− 2

∫ T

t

eβA(s)YsZsdBs − 2

∞∑

i=1

∫ T

t

eβA(s)YsU
(i)
s dH(i)

s

−
∞∑

i=1

∞∑

j=1

∫ T

t

eβA(s)U (i)
s U (j)

s d
(
[H(i),H(j)]s − 〈H(i),H(j)〉s

)
.

Consequently,

eβA(t)|Yt|2 + (
β

2
− 8

β
)

∫ T

t

a2(s)eβA(s)|Ys|2ds

+ (1− 8

β
)

∫ T

t

eβA(s)(|Zs|2 + ‖Us‖2)ds

≤ eβA(T )|ξ|2 + 8

β

∫ T

t

eβA(s) |f(s, 0, 0, 0)|2
a2(s)

ds+ 2

∫ T

t

eβA(s)SsdKs

− 2

∫ T

t

eβA(s)YsZsdBs − 2

∞∑

i=1

∫ T

t

eβA(s)YsU
(i)
s dH(i)

s

−
∞∑

i=1

∞∑

j=1

∫ T

t

eβA(s)U (i)
s U (j)

s d
(
[H(i),H(j)]s − 〈H(i),H(j)〉s

)
,

(3)
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where we have used the stochastic Lipschitz property of f and the facts that
dKs = I[Ys=Ss]dKs and 〈H(i),H(j)〉t = δijt.

For a sufficient large β > 0, taking expectation on both sides of inequality
(3), we get

E[eβA(t)|Yt|2 +
∫ T

t

eβA(s)a2(s)|Ys|2ds+
∫ T

t

eβA(s)(|Zs|2 + ‖Us‖2)ds]

≤ cβE[eβA(T )|ξ|2 +
∫ T

t

eβA(s) |f(s, 0, 0, 0)|2
a2(s)

ds+ 2

∫ T

t

eβA(s)S+
s dKs]

≤ cβE[eβA(T )|ξ|2 +
∫ T

t

eβA(s) |f(s, 0, 0, 0)|2
a2(s)

ds

+
1

θ
sup

0≤t≤T

e2βA(t)(S+
t )2 + θ(KT −Kt)

2],

(4)

where cβ > 0 is a constant depending only on β and θ > 0 is a constant.
On the other hand, from the equation

KT −Kt = Yt − ξ −
∫ T

t

f(s, Ys−, Zs, Us)ds+

∫ T

t

ZsdBs +

∞∑

i=1

∫ T

t

U (i)
s dH(i)

s

and the stochastic Lipschitz property of f , we have

E[|KT −Kt|2]

≤ 5E[|Yt|2 + |ξ|2 +
∫ T

t

(|Zs|2 + ‖Us‖2)ds

+ |
∫ T

t

f(s, Ys−, Zs, Us)ds|2]

≤ 5E[|Yt|2 + |ξ|2 +
∫ T

t

(|Zs|2 + ‖Us‖2)ds

+

∫ T

t

e−βA(s)a2(s)ds

∫ T

t

eβA(s) |f(s, Ys−, Zs, Us)|2
a2(s)

ds]

≤ 5E[|Yt|2 + |ξ|2 + (1 +
6

β
)

∫ T

t

eβA(s)(|Zs|2 + ‖Us‖2)ds

+
2

β

∫ T

t

eβA(s) |f(s, 0, 0, 0)|2
a2(s)

ds+
6

β

∫ T

t

eβA(s)a2(s)|Ys|2ds].

(5)

Combining this with (4), choosing θ > 0 small enough, we derive that there
exists a constant kβ > 0 depending only on β such that

E[|KT −Kt|2] ≤ kβE[eβA(T )|ξ|2 +
∫ T

t

eβA(s) |f(s, 0, 0, 0)|2
a2(s)

ds+ sup
0≤t≤T

e2βA(t)(S+
t )2].

We then get the desired result by combining Itô’s formula and Burkhölder-
Davis-Gundy’s inequality. The proof is complete. ¤
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3.2. Existence and uniqueness of solution

We first consider the special case that is the coefficient does not depend on
(Y, Z), i.e. f(ω, t, y, z) ≡ g(ω, t). We have the following result.

Theorem 1. Let β > 0 large enough and (a(t))t≥0 a nonnegative Ft-adapted

process. Assume that
g
a ∈ H2(β, a) and (H4)-(H5) hold. Then RBSDE (1) with

data (ξ, g, S) has a solution.

Proof. For 0 ≤ t ≤ T , we define

Ỹt = ess sup
ν≥t

E[

∫ ν

0

g(s)ds+ SνI{ν<T} + ξI{ν=T}|Ft],

where ν is an Ft-stopping time. The process Ỹt is called the Snell envelope of
the process which is inside ess sup.

By assumptions of the theorem, it is easy to see that ξ ∈ L2(0, a), S+
t ∈

S2(0, a) and (
∫ t

0
|g(s)|ds)0≤t≤T ∈ L2(0, a). Consequently, by Doob-Meyer de-

composition theorem in Dellacherie and Meyer [13], there exists a continuous
increasing process (Kt)0≤t≤T which satisfies E[|KT |2] < ∞ (K0 = 0) and a
martingale Mt ∈ S2(0, a) such that

∀t ∈ [0, T ], Ỹt = Mt −Kt.

By Proposition 1, there exists Zt ∈ H2(0, a) and Ut ∈ H2(0, a; l2) such that

Mt = M0 +

∫ t

0

ZsdBs +

∞∑

i=1

∫ t

0

U (i)
s dH(i)

s , ∀t ∈ [0, T ].

Let

Yt = Ỹt −
∫ t

0

f(s)ds, ∀t ∈ [0, T ].

According to Theorem 3.1 of Ren and Hu [8], we derive that (Y,Z, U,K) verifies

Yt = ξ +

∫ T

t

g(s)ds+KT −Kt −
∫ T

t

ZsdBs −
∞∑

i=1

∫ T

t

U (i)
s dH(i)

s

and

∀t ∈ [0, T ], Yt ≥ St,

∫ T

0

(Yt− − St−)dKt = 0.

By Lemma 1, (Yt, Zt, Ut,Kt)0≤t≤T is a solution of RBSDE (1). ¤

Furthermore, we have the following uniqueness result.

Proposition 2. With the same assumptions of Theorem 1, the RBSDE (1) with
data (ξ, g, S) has at most one solution.
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Proof. Let (Y, Z, U,K) and (Y ′, Z ′, U ′,K ′) be two solutions of the RBSDE (1).
Let

∆Y = Y − Y ′, ∆Z = Z − Z ′, ∆K = K −K ′, ∆U = U − U ′.

For 0 ≤ t ≤ T , we have

∆Yt = ∆KT −∆Kt −
∫ T

t

∆ZsdBs −
∞∑

i=1

∫ T

t

∆U (i)
s dH(i)

s .

Applying Itô’s formula to eβA(t)|∆Yt|2, we obtain

−E[eβA(t)|∆Yt|2] = −2E[

∫ T

t

eβA(s)∆Ysd(∆Ks)] + E[

∫ T

t

eβA(s)|∆Zs|2ds]

+ E[

∫ T

t

eβA(s)‖∆Us‖2ds]

Noting that
∫ T

t
eβA(s)∆Ysd(∆Ks) ≤ 0, it follows that ∆Yt = ∆Zt = ∆Ut = 0

and thus ∆Kt = 0, 0 ≤ t ≤ T a.s. ¤

We can now state and prove our main result.

Theorem 2. Assume (H1)-(H5) hold for a sufficient large β. Then RBSDE (1)
with data (ξ, f, S) has a unique solution.

Proof. Let H(β, a) = S2(β, a) ×H2(β, a) × L2(β, a). Given (y, z, u) ∈ H(β, a),
consider the following RBSDE:

Yt = ξ +

∫ T

t

f(s, ys, zs, us)ds+KT −Kt −
∫ T

t

ZsdBs −
∞∑
i=1

∫ T

t

U
(i)
s dH

(i)
s . (6)

By the stochastic Lipschitz assumption on f , we have

|f(t, yt, zt, ut)|2
a2(t)

≤ 6[a2(t)|yt|2 + |zt|2 + ‖ut‖2] + 2
|f(t, 0, 0, 0)|2

a2(t)
,

it follows from (H3) and Theorem 1 that the RBSDE (6) has a unique solution.
Define a mapping Φ from H(β, a) to itself. Let (y′, z′, u′) be another element

in H(β, a), set

(Y,Z, U) = Φ(y, z, u), (Y ′, Z ′, U ′) = Φ(y′, z′, u′),

where (Y, Z, U,K) (resp. (Y ′, Z ′, U ′,K ′)) is the unique solution of the RBSDE
(6) associated with data (ξ, f(t, yt, zt, ut), S) (resp. (ξ, f(t, y

′
t, z

′
t, u

′
t), S)).

Let

∆Y = Y − Y ′, ∆Z = Z − Z ′, ∆U = U − U ′, ∆K = K −K ′

∆y = y − y′, ∆z = z − z′, ∆u = u− u′

and

∆fs = f(s, ys, zs, us)− f(s, y′s, z
′
s, u

′
s).
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For 0 ≤ t ≤ T , we have

∆Yt =

∫ T

t

∆fsds+∆KT −∆Kt −
∫ T

t

∆ZsdBs −
∞∑

i=1

∫ T

t

∆U (i)
s dH(i)

s .

Applying Itô’s formula to eβA(t)|∆Yt|2, using (H1) and the facts
dKs = I[Ys=Ss]dKs and dK ′

s = I[Y ′
s=Ss]dK

′
s, we get

eβA(t)|∆Yt|2 + β

∫ T

t

a(s)2eβA(s)|∆Ys|2ds+
∫ T

t

eβA(s)(|∆Zs|2 + ‖∆Us‖2)ds

≤ 2

∫ T

t

eβA(s)∆Ys∆fsds+ 2

∫ T

t

eβA(s)∆Ysd(∆Ks)− 2

∫ T

t

eβA(s)∆Ys∆ZsdBs

− 2

∞∑
i=1

∫ T

t

eβA(s)∆Ys∆U (i)
s dH(i)

s − (NT −Nt)

≤ 2

∫ T

t

eβA(s)∆Ys∆fsds− 2

∫ T

t

eβA(s)∆Ys∆ZsdBs

− 2

∞∑
i=1

∫ T

t

eβA(s)∆Ys∆U (i)
s dH(i)

s − (NT −Nt)

≤ β

2

∫ T

t

a(s)2eβA(s)|∆Ys|2ds+ 6

β

∫ T

t

eβA(s)|(a(s)2|∆ys|2 + |∆zs|2 + ‖∆u‖2)ds

− 2

∫ T

t

eβA(s)∆Ys∆ZsdBs − 2

∞∑
i=1

∫ T

t

eβA(s)∆Ys∆U (i)
s dH(i)

s − (NT −Nt),

where {Nt, 0 ≤ t ≤ T} is a martingale given by

Nt =

∞∑

i=1

∞∑

j=1

∫ t

0

eβA(s)∆U (i)
s ∆U (j)

s d([H(i)H(j)]s − 〈H(i)H(j)〉s).

It follows that

E

[∫ T

t

eβA(s)(a(s)2|∆Ys|2 + |∆Zs|2 + ‖∆Us‖2)ds
]

≤ (
12

β2
+

6

β
)E

[∫ T

t

eβA(s)(a(s)2|∆ys|2 + |∆zs|2 + ‖∆us‖2)ds
]
.

For β > 0 large enough, one can easily to check that Φ is a contraction mapping
with the norm

‖(Y, Z, U)‖2β = E

[∫ T

0

eβA(s)(a(s)2|Ys|2 + |Zs|2 + ‖Us‖2)ds
]
.

Thus, φ has a unique fixed point which is the unique solution of RBSDE (1).
The theorem is proved. ¤
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Remark 1. When the coefficient f satisfy the standard Lipschitz condition,
one can easily to check that assumptions (H3)-(H5) are equivalent to:
(H3’) For all (y, z) ∈ R×Rd, the process f(·, ·, y, z) is progressively measurable
and such that ∀t ∈ [0, T ], f(t, 0, 0) ∈ H2(0, a);
(H4’) The terminal condition ξ ∈ L2(0, a);
(H5’) The obstacle S satisfying E[sup0≤t≤T (S

+
t )2] < ∞ and ST ≥ ξ a.s.

As a result, Theorem 2 covers the result in Ren and Hu [8] in the case of
standard setting.
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