MULTIPLICITY RESULTS OF POSITIVE SOLUTIONS FOR SINGULAR GENERALIZED LAPLACIAN SYSTEMS

Yong-Hoon Lee and Xianghui Xu

Abstract

We study the homogeneous Dirichlet boundary value problem of generalized Laplacian systems with a singular weight which may not be in L^{1}. Using the well-known fixed point theorem on cones, we obtain the multiplicity results of positive solutions under two different asymptotic behaviors of the nonlinearities at 0 and ∞. Furthermore, a global result of positive solutions for one special case with respect to a parameter is also obtained.

1. Introduction

In this paper, we study the following nonlinear differential system

$$
\left\{\begin{array}{l}
-\boldsymbol{\Phi}\left(\mathbf{u}^{\prime}\right)^{\prime}=\lambda \mathbf{h}(t) \cdot \mathbf{f}(\mathbf{u}), \quad t \in(0,1) \\
\mathbf{u}(0)=0=\mathbf{u}(1)
\end{array}\right.
$$

where $\boldsymbol{\Phi}\left(\mathbf{u}^{\prime}\right)=\left(\varphi\left(u_{1}^{\prime}\right), \ldots, \varphi\left(u_{N}^{\prime}\right)\right)$ with $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ an odd increasing homeomorphism, $\lambda>0$ a parameter, $\mathbf{h}(t)=\left(h_{1}(t), \ldots, h_{N}(t)\right)$ with $h_{i}:(0,1) \rightarrow \mathbb{R}_{+}$ continuous, $h_{i} \not \equiv 0$ on any subinterval in $(0,1)$ and $\mathbf{f}(\mathbf{u})=\left(f^{1}(\mathbf{u}), \ldots, f^{N}(\mathbf{u})\right)$ with $f^{i}: \mathbb{R}_{+}^{N} \rightarrow \mathbb{R}_{+}$, here we denote $\mathbb{R}_{+}=[0,+\infty), \mathbb{R}_{+}^{N}=\underbrace{\mathbb{R}_{+} \times \cdots \times \mathbb{R}_{+}}_{N}$ and $\mathbf{x} \cdot \mathbf{y}=\left(x_{1} y_{1}, x_{2} y_{2}, \ldots, x_{N} y_{N}\right)$ the Hadamard product of \mathbf{x} and \mathbf{y} in \mathbb{R}^{N}. Thus problem $\left(P_{\lambda}\right)$ can be rewritten as

$$
\left\{\begin{array}{l}
-\varphi\left(u_{1}^{\prime}\right)^{\prime}=\lambda h_{1}(t) f^{1}(\mathbf{u}), \\
\quad \vdots \\
-\varphi\left(u_{N}^{\prime}\right)^{\prime}=\lambda h_{N}(t) f^{N}(\mathbf{u}), \quad t \in(0,1), \\
u_{i}(0)=0=u_{i}(1), \quad i=1, \ldots, N .
\end{array}\right.
$$

[^0]The generalized Laplacian problems like $\left(P_{\lambda}\right)$ appear in various applications which describe reaction-diffusion systems, nonlinear elasticity, glaciology, population biology, combustion theory, and non-Newtonian fluids (see [8,10,11,16]). They also have received growing attention in connection with positive radial solutions of elliptic problems in both annular and exterior domains (see [9,21] and the references therein).

In recent years, existence and multiplicity of positive solutions of these problems have been extensively studied under various assumptions on the weight functions and nonlinearities (see [1-6], [9], [12], [14, 16-23]). For example, Wang [20] obtained the criteria of determining the number of positive solutions of problem $\left(P_{\lambda}\right)$ with respect to the parameter λ when each $h_{i}:[0,1] \rightarrow \mathbb{R}_{+}$is continuous and φ satisfies that there exist two increasing homeomorphisms ψ_{1} and ψ_{2} of $(0, \infty)$ onto $(0, \infty)$ such that

$$
\psi_{1}(\sigma) \varphi(x) \leq \varphi(\sigma x) \leq \psi_{2}(\sigma) \varphi(x) \text { for } \sigma, x>0
$$

In this paper, we give assumptions on φ, \mathbf{h} and \mathbf{f} as follows.
(A) There exist an increasing homeomorphism ψ of $(0, \infty)$ onto $(0, \infty)$ and a function γ of $(0, \infty)$ into $(0, \infty)$ such that

$$
\psi(\sigma) \leq \frac{\varphi(\sigma x)}{\varphi(x)} \leq \gamma(\sigma) \text { for all } \sigma>0, x \in \mathbb{R} /\{0\}
$$

$(H) \quad h_{i}:(0,1) \rightarrow \mathbb{R}_{+}$is a continuous function satisfying

$$
\int_{0}^{\frac{1}{2}} \psi^{-1}\left(\int_{s}^{\frac{1}{2}} h_{i}(\tau) d \tau\right) d s+\int_{\frac{1}{2}}^{1} \psi^{-1}\left(\int_{\frac{1}{2}}^{s} h_{i}(\tau) d \tau\right) d s<\infty
$$

for $i=1, \ldots, N$.
$\left(F_{1}\right) \quad f^{i}: \mathbb{R}_{+}^{N} \rightarrow \mathbb{R}_{+}$is continuous for $i=1, \ldots, N$.
$\left(F_{2}\right) \quad f^{i}(\mathbf{u})>0$ for $\mathbf{u} \in \mathbb{R}_{+}^{N}$ with $\|\mathbf{u}\|>0, i=1, \ldots, N$.
(F F_{3}) $f^{i}\left(u_{1}, \ldots, u_{N}\right) \leq f^{i}\left(v_{1}, \ldots, v_{N}\right)$, whenever $u_{i}=v_{i}, u_{j} \leq v_{j}, i \neq j$.
Note that φ covers the case of p-Laplace operator, namely $\varphi(x)=\varphi_{p}(x):=$ $|x|^{p-2} x, x \in \mathbb{R}, p>1$. Clearly, φ_{p} satisfies condition (A) with $\varphi_{p} \equiv \psi \equiv \gamma$. Specially, conditions $(A),(H)$ on φ and h_{i} were introduced first by Xu and Lee [22] and more general than the ones given by Wang [20]. For convenience, we introduce a new class of weight functions. For a bijection $\iota: \mathbb{R} \rightarrow \mathbb{R}$, define \mathcal{H}_{ι} a subset of $C\left((0,1), \mathbb{R}_{+}\right)$given by
$\mathcal{H}_{\iota}=\left\{g \in C\left((0,1), \mathbb{R}_{+}\right) \left\lvert\, \int_{0}^{\frac{1}{2}} \iota^{-1}\left(\int_{s}^{\frac{1}{2}} g(\tau) d \tau\right) d s+\int_{\frac{1}{2}}^{1} \iota^{-1}\left(\int_{\frac{1}{2}}^{s} g(\tau) d \tau\right) d s<\infty\right.\right\}$.
By the notation, condition (H) means $h_{i} \in \mathcal{H}_{\psi}$.
Now we introduce some notations for the statement of the main theorem. Denote

$$
\mathbf{f}_{0}:=\sum_{i=1}^{N} f_{0}^{i}, \quad \mathbf{f}_{\infty}:=\sum_{i=1}^{N} f_{\infty}^{i}
$$

where

$$
f_{0}^{i}:=\lim _{\|\mathbf{u}\| \rightarrow 0} \frac{f^{i}(\mathbf{u})}{\varphi(\|\mathbf{u}\|)}, \quad f_{\infty}^{i}:=\lim _{\|\mathbf{u}\| \rightarrow \infty} \frac{f^{i}(\mathbf{u})}{\varphi(\|\mathbf{u}\|)}
$$

for $\mathbf{u} \in \mathbb{R}_{+}^{N}$ and $i=1, \ldots, N$. For simplicity, we denote $\|\mathbf{u}\|=\sum_{i=1}^{N}\left|u_{i}\right|$ for $\mathbf{u} \in \mathbb{R}_{+}^{N}$ in this paper.

When $N=1, \varphi=\varphi_{p}$, Agarwal-Lü-O'Regan [1] and Sánchez [18] proved the multiplicity of positive solutions of problem $\left(P_{\lambda}\right)$ for λ belonging to some open interval if either $\mathbf{f}_{0}=\mathbf{f}_{\infty}=0$ or $\mathbf{f}_{0}=\mathbf{f}_{\infty}=\infty$. Later, Wang [20] extended the multiplicity results in $[1,18]$ to φ-Laplacian system with each $h_{i} \in C[0,1]$. Recently, Xu and Lee [23] derived some explicit intervals for λ such that singular φ-Laplacian system $\left(P_{\lambda}\right)$ has at least one positive solution if $0<\mathbf{f}_{0}, \mathbf{f}_{\infty}<\infty$.

Our aim is to extend the multiplicity results of Wang [20] to singular φ Laplacian system $\left(P_{\lambda}\right)$ for the cases $\mathbf{f}_{0}=\mathbf{f}_{\infty}=0$ and $\mathbf{f}_{0}=\mathbf{f}_{\infty}=\infty$. Further, under the monotone-type assumption $\left(F_{3}\right)$, we firstly obtain a global result of positive solutions for problem $\left(P_{\lambda}\right)$ with respect to λ for the case $\mathbf{f}_{0}=\mathbf{f}_{\infty}=\infty$. More precisely, main results can be stated as follows.
Theorem 1.1. Assume that $(A),(H),\left(F_{1}\right)$, and $\left(F_{2}\right)$ hold.
(1) If $\mathbf{f}_{0}=\mathbf{f}_{\infty}=0$, then there exist $\bar{\lambda}>\underline{\lambda}>0$ such that $\left(P_{\lambda}\right)$ has at least two positive solutions for $\lambda>\bar{\lambda}$, and no positive solution for $\lambda \in(0, \underline{\lambda})$, where $\bar{\lambda}, \underline{\lambda}$ are given by (3.2) and (3.9), respectively.
(2) If $\mathbf{f}_{0}=\mathbf{f}_{\infty}=\infty$, then there exist $\bar{\lambda}>\underline{\lambda}>0$ such that $\left(P_{\lambda}\right)$ has at least two positive solutions for $\lambda \in(0, \underline{\lambda})$, and no positive solution for $\lambda>\bar{\lambda}$, where $\underline{\lambda}, \bar{\lambda}$ are given by (3.11) and (3.21), respectively.
Theorem 1.2. Assume that $(A),(H),\left(F_{1}\right),\left(F_{2}\right)$ and $\left(F_{3}\right)$ hold. If $\mathbf{f}_{0}=$ $\mathbf{f}_{\infty}=\infty$, then there exist $\lambda^{*} \geq \lambda_{*}>0$ such that $\left(P_{\lambda}\right)$ has at least two positive solutions for $\lambda \in\left(0, \lambda_{*}\right)$, one positive solution for $\lambda \in\left[\lambda_{*}, \lambda^{*}\right]$, and no positive solution for $\lambda>\lambda^{*}$, where λ^{*}, λ_{*} are given by (3.28) and (3.29), respectively.
Remark 1.3. If $f^{i_{0}}(\mathbf{0})>0$ for some $i_{0} \in\{1, \ldots, N\}$, then we can get $\lambda_{*}=\lambda^{*}$ in Theorem 1.2. The proof can be easily completed by the similar arguments in [15].
Remark 1.4. Quasi-monotone condition $\left(F_{3}\right)$ is redundant in one dimensional case so that Theorem 1.2 is valid for scalar φ-Laplacian problem without any monotonicity condition on f.
Remark 1.5. Under the same assumptions in Theorem 1.2, we expect a similar result for the case $\mathbf{f}_{0}=\mathbf{f}_{\infty}=0$, but the analysis can not follow in a similar way.

As a benefit of a constructive technique used in this paper, we note that $\bar{\lambda}, \underline{\lambda}$ appeared in Theorem 1.1 can be computed explicitly (see examples in Section $4)$. For the proofs, we employ a newly developed solution operator introduced by Xu and Lee [22] and then we apply the fixed point theorem on cones for our main results.

Our paper is organized as follows. In Section 2, we establish a solution operator for problem $\left(P_{\lambda}\right)$ and introduce some preliminary facts. In Section 3, we prove the main theorems and in Section 4, we give some examples.

2. Preliminaries

Main condition of weight function h_{i} in problem $\left(P_{\lambda}\right)$ is of \mathcal{H}_{ψ}-class which includes singular functions specially on the boundary, i.e., h_{i} may not be integrable near the boundary, $t=0$ and/or $t=1$. In this case, solutions need not be in $C^{1}[0,1]$. So by a solution to problem $\left(P_{\lambda}\right)$, we understand a function $\mathbf{u} \in C_{0}\left([0,1], \mathbb{R}^{N}\right) \cap C^{1}\left((0,1), \mathbb{R}^{N}\right)$ with $\Phi\left(\mathbf{u}^{\prime}\right)$ absolutely continuous which satisfies problem $\left(P_{\lambda}\right)$.

Basic tool for proving our main results is the following well-known fixed point theorem ($[7,13]$).

Theorem 2.1. Let E be a Banach space and let K be a cone in E. Assume that Ω_{1} and Ω_{2} are open subsets of E with $0 \in \Omega_{1}, \overline{\Omega_{1}} \subset \Omega_{2}$. Assume that $T: K \cap\left(\overline{\Omega_{2}} \backslash \Omega_{1}\right) \rightarrow K$ is completely continuous such that either
$\|T \mathbf{u}\| \leq\|\mathbf{u}\|$ for $\mathbf{u} \in K \cap \partial \Omega_{1}$ and $\|T \mathbf{u}\| \geq\|\mathbf{u}\|$ for $\mathbf{u} \in K \cap \partial \Omega_{2}$, or
$\|T \mathbf{u}\| \geq\|\mathbf{u}\|$ for $\mathbf{u} \in K \cap \partial \Omega_{1}$ and $\|T \mathbf{u}\| \leq\|\mathbf{u}\|$ for $\mathbf{u} \in K \cap \partial \Omega_{2}$.
Then T has a fixed point in $K \cap\left(\overline{\Omega_{2}} \backslash \Omega_{1}\right)$.
To set up the solution operator for $\left(P_{\lambda}\right)$, let us define E the Banach space $\underbrace{C_{0}[0,1] \times \cdots \times C_{0}[0,1]}_{N}$ with norm $\|\mathbf{u}\|_{\infty}=\Sigma_{i=1}^{N}\left\|u_{i}\right\|_{\infty}$ and define a cone K by taking $K=\left\{\mathbf{u} \in E \mid u_{i}\right.$ is concave on $\left.[0,1], i=1, \ldots, N\right\}$.

Let us consider a simple scalar problem of the form

$$
\begin{align*}
-\varphi\left(w^{\prime}\right)^{\prime} & =g(t), \quad t \in(0,1) \tag{W}\\
w(0) & =w(1)=0 \tag{D}
\end{align*}
$$

where φ satisfies (A) and $g \in \mathcal{H}_{\varphi}$. Note from condition (A) that $\mathcal{H}_{\psi} \subset \mathcal{H}_{\varphi}$ (see Remark 2.3). Let w be a solution of $(W)+(D)$. Then integrating both sides of (W) on the interval $\left[s, \frac{1}{2}\right]$ for $s \in\left(0, \frac{1}{2}\right]$ and $\left[\frac{1}{2}, s\right]$ for $s \in\left[\frac{1}{2}, 1\right)$, respectively, we find that $(W)+(D)$ is equivalent to

$$
\left\{\begin{array}{l}
w^{\prime}(s)=\varphi^{-1}\left(a+\int_{s}^{\frac{1}{2}} g(\tau) d \tau\right), w(0)=0, \quad s \in\left(0, \frac{1}{2}\right] \tag{2.1}\\
w^{\prime}(s)=\varphi^{-1}\left(a-\int_{\frac{1}{2}}^{s} g(\tau) d \tau\right), w(1)=0, \quad s \in\left[\frac{1}{2}, 1\right)
\end{array}\right.
$$

where $a=\varphi\left(w^{\prime}\left(\frac{1}{2}\right)\right)$. Showing the fact $\varphi^{-1}\left(a+\int_{s}^{\frac{1}{2}} g(\tau) d \tau\right) \in L^{1}\left(0, \frac{1}{2}\right]$ is not obvious since g can not be in $L^{1}\left(0, \frac{1}{2}\right]$. One may refer to Xu and Lee [22] for the proof. Now we may integrate both sides of (2.1) on the interval $[0, t]$ for $t \in\left[0, \frac{1}{2}\right]$ and on the interval $[t, 1]$ for $t \in\left[\frac{1}{2}, 1\right]$, respectively. And we get

$$
w(t)= \begin{cases}\int_{0}^{t} \varphi^{-1}\left(a+\int_{s}^{\frac{1}{2}} g(\tau) d \tau\right) d s, & t \in\left[0, \frac{1}{2}\right] \\ \int_{t}^{1} \varphi^{-1}\left(-a+\int_{\frac{1}{2}}^{s} g(\tau) d \tau\right) d s, & t \in\left[\frac{1}{2}, 1\right]\end{cases}
$$

To check $w\left(\frac{1}{2}^{-}\right)=w\left(\frac{1}{2}^{+}\right)$, define for $a \in \mathbb{R}$,
(2.2) $G(a)=\int_{0}^{\frac{1}{2}} \varphi^{-1}\left(a+\int_{s}^{\frac{1}{2}} g(\tau) d \tau\right) d s-\int_{\frac{1}{2}}^{1} \varphi^{-1}\left(-a+\int_{\frac{1}{2}}^{s} g(\tau) d \tau\right) d s$.

Then the function $G: \mathbb{R} \rightarrow \mathbb{R}$ is well-defined and has a unique zero $a=a(g)$ in \mathbb{R} (See Xu and Lee [22] for the proof). This implies $w\left(\frac{1}{2}^{-}\right)=w\left(\frac{1}{2}^{+}\right)$. Consequently, if φ satisfies (A) and $g \in \mathcal{H}_{\varphi}$, then the solution w of $(W)+(D)$ can be represented by

$$
w(t)= \begin{cases}\int_{0}^{t} \varphi^{-1}\left(a(g)+\int_{s}^{\frac{1}{2}} g(\tau) d \tau\right) d s, & t \in\left[0, \frac{1}{2}\right] \tag{2.3}\\ \int_{t}^{1} \varphi^{-1}\left(-a(g)+\int_{\frac{1}{2}}^{s} g(\tau) d \tau\right) d s, & t \in\left[\frac{1}{2}, 1\right],\end{cases}
$$

where $a(g) \in \mathbb{R}$ uniquely satisfies

$$
\int_{0}^{\frac{1}{2}} \varphi^{-1}\left(a(g)+\int_{s}^{\frac{1}{2}} g(\tau) d \tau\right) d s=\int_{\frac{1}{2}}^{1} \varphi^{-1}\left(-a(g)+\int_{\frac{1}{2}}^{s} g(\tau) d \tau\right) d s
$$

Replacing $g(t)$ with $\lambda h_{i}(t) f^{i}(\mathbf{u}(t))$ in $(W)+(D)$, we may define

$$
T_{\lambda}(\mathbf{u})=\left(T_{\lambda}^{1}(\mathbf{u}), \ldots, T_{\lambda}^{N}(\mathbf{u})\right)
$$

for $\lambda>0, \mathbf{u} \in K$ and for $i=1, \ldots, N$, given by
$T_{\lambda}^{i}(\mathbf{u})(t)= \begin{cases}\int_{0}^{t} \varphi^{-1}\left(a^{i}\left(\lambda h_{i} f^{i}(\mathbf{u})\right)+\int_{s}^{\frac{1}{2}} \lambda h_{i}(\tau) f^{i}(\mathbf{u}(\tau)) d \tau\right) d s, & t \in\left[0, \frac{1}{2}\right], \\ \int_{t}^{1} \varphi^{-1}\left(-a^{i}\left(\lambda h_{i} f^{i}(\mathbf{u})\right)+\int_{\frac{1}{2}}^{s} \lambda h_{i}(\tau) f^{i}(\mathbf{u}(\tau)) d \tau\right) d s, & t \in\left[\frac{1}{2}, 1\right],\end{cases}$
where $a^{i}\left(\lambda h_{i} f^{i}(\mathbf{u})\right) \in \mathbb{R}$ uniquely satisfies

$$
\begin{aligned}
& \int_{0}^{\frac{1}{2}} \varphi^{-1}\left(a^{i}\left(\lambda h_{i} f^{i}(\mathbf{u})\right)+\int_{s}^{\frac{1}{2}} \lambda h_{i}(\tau) f^{i}(\mathbf{u}(\tau)) d \tau\right) d s \\
= & \int_{\frac{1}{2}}^{1} \varphi^{-1}\left(-a^{i}\left(\lambda h_{i} f^{i}(\mathbf{u})\right)+\int_{\frac{1}{2}}^{s} \lambda h_{i}(\tau) f^{i}(\mathbf{u}(\tau)) d \tau\right) d s .
\end{aligned}
$$

One may show that $T_{\lambda}: K \rightarrow K$ is completely continuous (See Lemma 11 in Xu and Lee [22] for details). Thus we see that \mathbf{u} is a positive solution of $\left(P_{\lambda}\right)$ if and only if

$$
\mathbf{u}=T_{\lambda}(\mathbf{u}) \text { on } K
$$

We finally give some remarks and lemma for later use.
Remark 2.2. From condition (A), we get

$$
\sigma x \leq \varphi^{-1}[\gamma(\sigma) \varphi(x)]
$$

and

$$
\varphi^{-1}[\sigma \varphi(x)] \leq \psi^{-1}(\sigma) x
$$

for σ and $x>0$.

Remark 2.3. Let $h \in L_{\text {loc }}^{1}\left((0,1), \mathbb{R}_{+}\right)$. Then for any fixed $s \in\left(0, \frac{1}{2}\right)$, we know $\int_{\text {get }}^{\frac{1}{2}} h(\tau) d \tau<\infty$. Applying $\sigma=\int_{s}^{\frac{1}{2}} h(\tau) d \tau$ and $x=\varphi^{-1}(1)$ in Remark 2.2, we get

$$
\varphi^{-1}\left(\int_{s}^{\frac{1}{2}} h(\tau) d \tau\right) \leq \varphi^{-1}(1) \psi^{-1}\left(\int_{s}^{\frac{1}{2}} h(\tau) d \tau\right)
$$

This implies $\mathcal{H}_{\psi} \subset \mathcal{H}_{\varphi}$.
Proposition 2.4. ([20]) Let $w \in C_{0}[0,1] \cap C^{1}(0,1)$ satisfy $\varphi\left(w^{\prime}\right)^{\prime} \leq 0$ on $(0,1)$. Then w is concave on $[0,1]$ and $\min _{t \in\left[\frac{1}{4}, \frac{3}{4}\right]} w(t) \geq \frac{1}{4}\|w\|_{\infty}$, where $\|w\|_{\infty}$ is the supremum norm of w.

3. Proofs of main results

In this section, we need to give some lemmas which will play a crucial role in the proofs of Theorem 1.1 and Theorem 1.2.

Lemma 3.1. Assume that $(A),(H),\left(F_{1}\right)$, and $\left(F_{2}\right)$ hold. If $\mathbf{f}_{0}=\mathbf{f}_{\infty}=0$, then there exists $\bar{\lambda}>0$ such that $\left(P_{\lambda}\right)$ has at least two positive solutions for $\lambda>\bar{\lambda}$.
Proof. For any $r>0$, define

$$
\hat{m}_{r}=\min \left\{f^{i}(\mathbf{x}) \mid \mathbf{x} \in \mathbb{R}_{+}^{N}, \frac{r}{4} \leq\|\mathbf{x}\| \leq r, i=1, \ldots, N\right\}
$$

We see that $\hat{m}_{r}>0$, by $\left(F_{2}\right)$. For $K_{r} \triangleq\left\{\mathbf{u} \in K \mid\|\mathbf{u}\|_{\infty}<r\right\}$, let $\mathbf{u} \in \partial K_{r}$, then by Proposition 2.4, for $t \in\left[\frac{1}{4}, \frac{3}{4}\right]$,

$$
r=\|\mathbf{u}\|_{\infty} \geq\|\mathbf{u}(t)\|=\sum_{i=1}^{N} u_{i}(t) \geq \min _{t \in\left[\frac{1}{4}, \frac{3}{4}\right]} \sum_{i=1}^{N} u_{i}(t) \geq \frac{1}{4}\|\mathbf{u}\|_{\infty}=\frac{r}{4}
$$

and

$$
\begin{equation*}
f^{i}(\mathbf{u}(t)) \geq \hat{m}_{r} \text { for } i=1, \ldots, N \tag{3.1}
\end{equation*}
$$

For simplicity, denote $a_{\lambda, \mathbf{u}}^{i} \triangleq a^{i}\left(\lambda h_{i} f^{i}(\mathbf{u})\right)$. Then for $\mathbf{u} \in \partial K_{r}$, we get

$$
\begin{aligned}
2 T_{\lambda}^{i}(\mathbf{u})\left(\frac{1}{2}\right)= & \int_{0}^{\frac{1}{2}} \varphi^{-1}\left(a_{\lambda, \mathbf{u}}^{i}+\int_{s}^{\frac{1}{2}} \lambda h_{i}(\tau) f^{i}(\mathbf{u}(\tau)) d \tau\right) d s \\
& +\int_{\frac{1}{2}}^{1} \varphi^{-1}\left(-a_{\lambda, \mathbf{u}}^{i}+\int_{\frac{1}{2}}^{s} \lambda h_{i}(\tau) f^{i}(\mathbf{u}(\tau)) d \tau\right) d s
\end{aligned}
$$

If $a_{\lambda, \mathbf{u}}^{i} \geq 0$, then

$$
\begin{aligned}
& \int_{0}^{\frac{1}{2}} \varphi^{-1}\left(a_{\lambda, \mathbf{u}}^{i}+\int_{s}^{\frac{1}{2}} \lambda h_{i}(\tau) f^{i}(\mathbf{u}(\tau)) d \tau\right) d s \\
& \quad \geq \int_{0}^{\frac{1}{2}} \varphi^{-1}\left(\int_{s}^{\frac{1}{2}} \lambda h_{i}(\tau) f^{i}(\mathbf{u}(\tau)) d \tau\right) d s
\end{aligned}
$$

and by the definition of $a_{\lambda, \mathbf{u}}^{i}$,

$$
\begin{aligned}
& \int_{\frac{1}{2}}^{1} \varphi^{-1}\left(-a_{\lambda, \mathbf{u}}^{i}+\int_{\frac{1}{2}}^{s} \lambda h_{i}(\tau) f^{i}(\mathbf{u}(\tau)) d \tau\right) d s \\
= & \int_{0}^{\frac{1}{2}} \varphi^{-1}\left(a_{\lambda, \mathbf{u}}^{i}+\int_{s}^{\frac{1}{2}} \lambda h_{i}(\tau) f^{i}(\mathbf{u}(\tau)) d \tau\right) d s \geq 0 .
\end{aligned}
$$

Thus

$$
2 T_{\lambda}^{i}(\mathbf{u})\left(\frac{1}{2}\right) \geq \int_{0}^{\frac{1}{2}} \varphi^{-1}\left(\int_{s}^{\frac{1}{2}} \lambda h_{i}(\tau) f^{i}(\mathbf{u}(\tau)) d \tau\right) d s
$$

If $a_{\lambda, \mathbf{u}}^{i}<0$, then $-a_{\lambda, \mathbf{u}}^{i}>0$ and

$$
\begin{aligned}
& \int_{\frac{1}{2}}^{1} \varphi^{-1}\left(-a_{\lambda, \mathbf{u}}^{i}+\int_{\frac{1}{2}}^{s} \lambda h_{i}(\tau) f^{i}(u(\tau)) d \tau\right) d s \\
\geq & \int_{\frac{1}{2}}^{1} \varphi^{-1}\left(\int_{\frac{1}{2}}^{s} \lambda h_{i}(\tau) f^{i}(u(\tau)) d \tau\right) d s
\end{aligned}
$$

and by the same argument, we get

$$
2 T_{\lambda}^{i}(\mathbf{u})\left(\frac{1}{2}\right) \geq \int_{\frac{1}{2}}^{1} \varphi^{-1}\left(\int_{\frac{1}{2}}^{s} \lambda h_{i}(\tau) f^{i}(\mathbf{u}(\tau)) d \tau\right) d s
$$

Thus, we obtain

$$
\begin{aligned}
& 2 T_{\lambda}^{i}(\mathbf{u})\left(\frac{1}{2}\right) \\
\geq & \min \left\{\int_{0}^{\frac{1}{2}} \varphi^{-1}\left(\int_{s}^{\frac{1}{2}} \lambda h_{i}(\tau) f^{i}(\mathbf{u}(\tau)) d \tau\right) d s, \int_{\frac{1}{2}}^{1} \varphi^{-1}\left(\int_{\frac{1}{2}}^{s} \lambda h_{i}(\tau) f^{i}(\mathbf{u}(\tau)) d \tau\right) d s\right\} .
\end{aligned}
$$

By using (3.1), we get

$$
\begin{aligned}
& 2\left\|T_{\lambda}^{i}(\mathbf{u})\right\|_{\infty} \\
\geq & 2 T_{\lambda}^{i}(\mathbf{u})\left(\frac{1}{2}\right) \\
\geq & \min \left\{\int_{0}^{\frac{1}{2}} \varphi^{-1}\left(\int_{s}^{\frac{1}{2}} \lambda h_{i}(\tau) f^{i}(\mathbf{u}(\tau)) d \tau\right) d s, \int_{\frac{1}{2}}^{1} \varphi^{-1}\left(\int_{\frac{1}{2}}^{s} \lambda h_{i}(\tau) f^{i}(\mathbf{u}(\tau)) d \tau\right) d s\right\} \\
\geq & \min \left\{\int_{0}^{\frac{1}{4}} \varphi^{-1}\left(\int_{s}^{\frac{1}{2}} \lambda h_{i}(\tau) f^{i}(\mathbf{u}(\tau)) d \tau\right) d s, \int_{\frac{3}{4}}^{1} \varphi^{-1}\left(\int_{\frac{1}{2}}^{s} \lambda h_{i}(\tau) f^{i}(\mathbf{u}(\tau)) d \tau\right) d s\right\} \\
\geq & \min \left\{\int_{0}^{\frac{1}{4}} \varphi^{-1}\left(\int_{\frac{1}{4}}^{\frac{1}{2}} \lambda h_{i}(\tau) f^{i}(\mathbf{u}(\tau)) d \tau\right) d s, \int_{\frac{3}{4}}^{1} \varphi^{-1}\left(\int_{\frac{1}{2}}^{\frac{3}{4}} \lambda h_{i}(\tau) f^{i}(\mathbf{u}(\tau)) d \tau\right) d s\right\} \\
\geq & \min \left\{\int_{0}^{\frac{1}{4}} \varphi^{-1}\left(\lambda \hat{m}_{r} \int_{\frac{1}{4}}^{\frac{1}{2}} h_{i}(\tau) d \tau\right) d s, \int_{\frac{3}{4}}^{1} \varphi^{-1}\left(\lambda \hat{m}_{r} \int_{\frac{1}{2}}^{\frac{3}{4}} h_{i}(\tau) d \tau\right) d s\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{4} \varphi^{-1}\left(\lambda \hat{m}_{r} \min \left\{\int_{\frac{1}{4}}^{\frac{1}{2}} h_{i}(\tau) d \tau, \int_{\frac{1}{2}}^{\frac{3}{4}} h_{i}(\tau) d \tau\right\}\right) \\
& \geq \frac{1}{4} \varphi^{-1}\left(\lambda \hat{m}_{r} \Gamma\right),
\end{aligned}
$$

where $\Gamma \triangleq \min \left\{\left.\min \left\{\int_{\frac{1}{4}}^{\frac{1}{2}} h_{i}(\tau) d \tau, \int_{\frac{1}{2}}^{\frac{3}{4}} h_{i}(\tau) d \tau\right\} \right\rvert\, i=1, \ldots, N\right\}$. Define

$$
p(r)=\frac{\varphi(8 r)}{\hat{m}_{r} \Gamma}
$$

then $p:(0, \infty) \rightarrow(0, \infty)$ is continuous. Since $\mathbf{f}_{0}=\mathbf{f}_{\infty}=0$, we get

$$
\lim _{r \rightarrow 0} p(r)=\lim _{r \rightarrow \infty} p(r)=\infty
$$

Thus, there exists $r_{*} \in(0, \infty)$ such that

$$
\begin{equation*}
p\left(r_{*}\right)=\inf \{p(r) \mid r>0\} \triangleq \bar{\lambda} \tag{3.2}
\end{equation*}
$$

Then for any $\lambda>\bar{\lambda}$, there exist $r_{1}, r_{2}>0$ such that $0<r_{1}<r_{*}<r_{2}<\infty$ with $p\left(r_{1}\right)=p\left(r_{2}\right)=\lambda$. Therefore, if $\mathbf{u} \in \partial K_{r_{1}}$, then for any $\lambda>\bar{\lambda}$,

$$
2\left\|T_{\lambda}^{i}(\mathbf{u})\right\|_{\infty} \geq 2 T_{\lambda}^{i}(\mathbf{u})\left(\frac{1}{2}\right) \geq \frac{1}{4} \varphi^{-1}\left(\frac{\varphi\left(8 r_{1}\right)}{\hat{m}_{r_{1}} \Gamma} \hat{m}_{r_{1}} \Gamma\right)=2 r_{1}=2\|\mathbf{u}\|_{\infty}
$$

and thus

$$
\begin{equation*}
\left\|T_{\lambda}(\mathbf{u})\right\|_{\infty} \geq\left\|T_{\lambda}^{i}(\mathbf{u})\right\|_{\infty} \geq\|\mathbf{u}\|_{\infty} \text { for } \mathbf{u} \in \partial K_{r_{1}}, \lambda>\bar{\lambda} \tag{3.3}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\left\|T_{\lambda}(\mathbf{u})\right\|_{\infty} \geq\left\|T_{\lambda}^{i}(\mathbf{u})\right\|_{\infty} \geq\|\mathbf{u}\|_{\infty} \text { for } \mathbf{u} \in \partial K_{r_{2}}, \lambda>\bar{\lambda} \tag{3.4}
\end{equation*}
$$

Let $\mathbf{f}_{0}=\mathbf{f}_{\infty}=0$, then $f_{0}^{i}=f_{\infty}^{i}=0, i=1, \ldots, N$. For $\lambda>\bar{\lambda}$, we can choose $\epsilon(=\epsilon(\lambda))>0$ sufficiently small so that

$$
\psi^{-1}(\lambda \epsilon) \Upsilon \leq \frac{1}{N}
$$

where
$\Upsilon \triangleq \max \left\{\left.\max \left\{\int_{0}^{\frac{1}{2}} \psi^{-1}\left(\int_{s}^{\frac{1}{2}} h_{i}(\tau) d \tau\right) d s, \int_{\frac{1}{2}}^{1} \psi^{-1}\left(\int_{\frac{1}{2}}^{s} h_{i}(\tau) d \tau\right) d s\right\} \right\rvert\, i=1, \ldots, N\right\}$.
Since $f_{0}^{i}=0$, there exists $r_{3}^{i}\left(=r_{3}^{i}(\epsilon)\right)>0$ such that for $\mathbf{x} \in \mathbb{R}_{+}^{N}$ with $\|\mathbf{x}\| \leq r_{3}^{i}$,

$$
f^{i}(\mathbf{x}) \leq \epsilon \varphi(\|\mathbf{x}\|) \text { for } i=1, \ldots, N
$$

Take $0<r_{3}<\min \left\{r_{1}, \min \left\{r_{3}^{i} \mid i=1, \ldots, N\right\}\right\}$. Then for $\mathbf{u} \in \partial K_{r_{3}}$, we get

$$
\begin{equation*}
f^{i}(\mathbf{u}(t)) \leq \epsilon \varphi(\|\mathbf{u}(t)\|) \leq \epsilon \varphi\left(r_{3}\right) \text { for } i=1, \ldots, N . \tag{3.5}
\end{equation*}
$$

Since $f_{\infty}^{i}=0$, we define a function $\hat{f}^{i}(t): \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$by

$$
\hat{f}^{i}(t)=\max \left\{f^{i}(\mathbf{x}) \mid \mathbf{x} \in \mathbb{R}_{+}^{N},\|\mathbf{x}\| \leq t\right\}
$$

By Lemma 2.8 in Wang [20], we have

$$
\hat{f}_{\infty}^{i}=\lim _{t \rightarrow \infty} \frac{\hat{f}^{i}(t)}{\varphi(t)}=f_{\infty}^{i}=0
$$

Since $\hat{f_{\infty}^{i}}=0$, then for ϵ given above, there exists $r_{4}^{i}\left(=r_{4}^{i}(\epsilon)\right)>0$ such that for $t \in \mathbb{R}_{+}$with $t \geq r_{4}^{i}$,

$$
\hat{f}^{i}(t) \leq \epsilon \varphi(t) \text { for } i=1, \ldots, N
$$

Take $r_{4}>\max \left\{r_{2}, \max \left\{r_{4}^{i} \mid i=1, \ldots, N\right\}\right\}$. Then for $\mathbf{u} \in \partial K_{r_{4}}$, we get

$$
\begin{equation*}
f^{i}(\mathbf{u}(t)) \leq \hat{f^{i}}\left(r_{4}\right) \leq \epsilon \varphi\left(r_{4}\right) \text { for } i=1, \ldots, N . \tag{3.6}
\end{equation*}
$$

Since $T_{\lambda}(\mathbf{u}) \in K$ for $\mathbf{u} \in \partial K_{r_{j}}(j=3,4)$, there exists a unique $\sigma_{i} \in(0,1)$ such that $T_{\lambda}^{i}(\mathbf{u})\left(\sigma_{i}\right)=\max _{t \in[0,1]} T_{\lambda}^{i}(\mathbf{u})(t)$ and $T_{\lambda}^{i}(\mathbf{u})^{\prime}\left(\sigma_{i}\right)=0$. We first consider the case $\sigma_{i} \in\left(0, \frac{1}{2}\right]$.

$$
0=T_{\lambda}^{i}(\mathbf{u})^{\prime}\left(\sigma_{i}\right)=\varphi^{-1}\left(a_{\lambda, \mathbf{u}}^{i}+\int_{\sigma_{i}}^{\frac{1}{2}} \lambda h_{i}(\tau) f^{i}(\mathbf{u}(\tau)) d \tau\right)
$$

Since φ is an odd homeomorphism, $a_{\lambda, \mathbf{u}}^{i}=-\int_{\sigma_{i}}^{\frac{1}{2}} \lambda h_{i}(\tau) f^{i}(\mathbf{u}(\tau)) d \tau$. Applying (3.5), (3.6) and Remark 2.2 with $\sigma=\lambda \epsilon, x=\varphi^{-1}\left(\varphi\left(r_{j}\right) \int_{s}^{\frac{1}{2}} \lambda h_{i}(\tau) d \tau\right)$ and then $\sigma=\int_{s}^{\frac{1}{2}} h_{i}(\tau) d \tau, x=r_{j}$ consecutively, we obtain

$$
\begin{aligned}
\left\|T_{\lambda}^{i}(\mathbf{u})\right\|_{\infty} & =T_{\lambda}^{i}(\mathbf{u})\left(\sigma_{i}\right) \\
& =\int_{0}^{\sigma_{i}} \varphi^{-1}\left(a_{\lambda, \mathbf{u}}^{i}+\int_{s}^{\frac{1}{2}} \lambda h_{i}(\tau) f^{i}(\mathbf{u}(\tau)) d \tau\right) d s \\
& =\int_{0}^{\sigma_{i}} \varphi^{-1}\left(-\int_{\sigma_{i}}^{\frac{1}{2}} \lambda h_{i}(\tau) f^{i}(\mathbf{u}(\tau)) d \tau+\int_{s}^{\frac{1}{2}} \lambda h_{i}(\tau) f^{i}(\mathbf{u}(\tau)) d \tau\right) d s \\
& =\int_{0}^{\sigma_{i}} \varphi^{-1}\left(\int_{s}^{\sigma_{i}} \lambda h_{i}(\tau) f^{i}(\mathbf{u}(\tau)) d \tau\right) d s \\
& \leq \int_{0}^{\frac{1}{2}} \varphi^{-1}\left(\int_{s}^{\frac{1}{2}} \lambda h_{i}(\tau) f^{i}(\mathbf{u}(\tau)) d \tau\right) d s \\
& \leq \int_{0}^{\frac{1}{2}} \varphi^{-1}\left(\lambda \epsilon \varphi\left(r_{j}\right) \int_{s}^{\frac{1}{2}} h_{i}(\tau) d \tau\right) d s \\
& \leq \psi^{-1}(\lambda \epsilon) \int_{0}^{\frac{1}{2}} \varphi^{-1}\left(\varphi\left(r_{j}\right) \int_{s}^{\frac{1}{2}} h_{i}(\tau) d \tau\right) d s \\
& \leq \psi^{-1}(\lambda \epsilon)\left[\int_{0}^{\frac{1}{2}} \psi^{-1}\left(\int_{s}^{\frac{1}{2}} h_{i}(\tau) d \tau\right) d s\right] r_{j} .
\end{aligned}
$$

Similarly for the case $\sigma_{i} \in\left[\frac{1}{2}, 1\right)$, we get

$$
\left\|T_{\lambda}^{i}(\mathbf{u})\right\|_{\infty} \leq \psi^{-1}(\lambda \epsilon)\left[\int_{\frac{1}{2}}^{1} \psi^{-1}\left(\int_{\frac{1}{2}}^{s} h_{i}(\tau) d \tau\right) d s\right] r_{j}
$$

Combining the above two inequalities and using the choice of ϵ, we get

$$
\left\|T_{\lambda}^{i}(\mathbf{u})\right\|_{\infty} \leq \psi^{-1}(\lambda \epsilon) \Upsilon r_{j} \leq \frac{r_{j}}{N}
$$

for $i=1, \ldots, N, j=3,4$, and thus

$$
\begin{equation*}
\left\|T_{\lambda}(\mathbf{u})\right\|_{\infty}=\sum_{i=1}^{N}\left\|T_{\lambda}^{i}(\mathbf{u})\right\|_{\infty} \leq\|\mathbf{u}\|_{\infty} \text { for } \mathbf{u} \in \partial K_{r_{j}}(j=3,4) \tag{3.7}
\end{equation*}
$$

Combining (3.3), (3.4) and (3.7), we conclude that problem $\left(P_{\lambda}\right)$ has at least two positive solutions $\mathbf{u}_{1}, \mathbf{u}_{2}$ with $r_{3} \leq\left\|\mathbf{u}_{1}\right\|_{\infty} \leq r_{1}<r_{2} \leq\left\|\mathbf{u}_{2}\right\|_{\infty} \leq r_{4}$ for $\lambda>\bar{\lambda}$.

Lemma 3.2. Assume that $(A),(H)$, and $\left(F_{1}\right)$ hold. If $\mathbf{f}_{0}=\mathbf{f}_{\infty}=0$, then there exists $\underline{\lambda} \in(0, \bar{\lambda})$ such that $\left(P_{\lambda}\right)$ has no positive solution for $\lambda \in(0, \underline{\lambda})$.
Proof. Since $\mathbf{f}_{0}=\mathbf{f}_{\infty}=0<\infty$, then $f_{0}^{i}<\infty$ and $f_{\infty}^{i}<\infty, i=1, \ldots, N$. Thus, for any $i=1, \ldots, N$, there exist positive numbers $\beta_{1}^{i}, \beta_{2}^{i}, R_{1}^{i}, R_{2}^{i}$ such that $R_{1}^{i}<R_{2}^{i}, \beta_{1}^{i}>f_{0}^{i}, \beta_{2}^{i}>f_{\infty}^{i}$,

$$
f^{i}(\mathbf{x}) \leq \beta_{1}^{i} \varphi(\|\mathbf{x}\|) \text { for } \mathbf{x} \in \mathbb{R}_{+}^{N},\|\mathbf{x}\| \leq R_{1}^{i}
$$

and

$$
f^{i}(\mathbf{x}) \leq \beta_{2}^{i} \varphi(\|\mathbf{x}\|) \text { for } \mathbf{x} \in \mathbb{R}_{+}^{N},\|\mathbf{x}\| \geq R_{2}^{i}
$$

Let

$$
\beta^{i}=\max \left\{\beta_{1}^{i}, \beta_{2}^{i}, \max \left\{\left.\frac{f^{i}(\mathbf{x})}{\varphi(\|\mathbf{x}\|)} \right\rvert\, \mathbf{x} \in \mathbb{R}_{+}^{N}, R_{1}^{i} \leq\|\mathbf{x}\| \leq R_{2}^{i}\right\}\right\}
$$

and

$$
\beta=\max \left\{\max \left\{\beta^{i} \mid i=1, \ldots, N\right\}, \inf \left\{\beta \mid \beta>0, \frac{\psi\left(\frac{1}{N \Upsilon}\right)}{\beta}<\bar{\lambda}\right\}\right\}
$$

Thus, we have

$$
\begin{equation*}
f^{i}(\mathbf{x}) \leq \beta \varphi(\|\mathbf{x}\|) \text { for } \mathbf{x} \in \mathbb{R}_{+}^{N}, i=1, \ldots, N \tag{3.8}
\end{equation*}
$$

Assume that $\mathbf{v}(t)$ is a positive solution of $\left(P_{\lambda}\right)$. We prove that if $\left(P_{\lambda}\right)$ has a positive solution, then $\lambda \geq \underline{\lambda}$, where

$$
\begin{equation*}
\underline{\lambda}:=\frac{\psi\left(\frac{1}{N \Upsilon}\right)}{\beta} . \tag{3.9}
\end{equation*}
$$

Indeed, on the contrary, suppose that $\left(P_{\lambda}\right)$ has a positive solution \mathbf{v} for $0<$ $\lambda<\underline{\lambda}$. Since $\mathbf{v}(t)=T_{\lambda}(\mathbf{v})(t)$ for $t \in[0,1]$, applying the same argument in the proof of Lemma 3.1 with aid of (3.8) and Remark 2.2 with $\sigma=\lambda \beta$,
$x=\varphi^{-1}\left(\varphi\left(\|\mathbf{v}\|_{\infty}\right) \int_{s}^{\frac{1}{2}} h_{i}(\tau) d \tau\right)$ and $\sigma=\int_{s}^{\frac{1}{2}} h_{i}(\tau) d \tau, x=\|\mathbf{v}\|_{\infty}$ consecutively, we get for $0<\lambda<\underline{\lambda}$,

$$
\|\mathbf{v}\|_{\infty}=\left\|T_{\lambda}(\mathbf{v})\right\|_{\infty}=\sum_{i=1}^{N}\left\|T_{\lambda}^{i}(\mathbf{v})\right\|_{\infty} \leq N \cdot \psi^{-1}(\lambda \beta) \Upsilon\|\mathbf{v}\|_{\infty}<\|\mathbf{v}\|_{\infty}
$$

which is a contradiction.
Lemma 3.3. Assume that $(A),(H),\left(F_{1}\right)$, and $\left(F_{2}\right)$ hold. If $\mathbf{f}_{0}=\mathbf{f}_{\infty}=\infty$, then there exists $\underline{\lambda}>0$ such that $\left(P_{\lambda}\right)$ has at least two positive solutions for $\lambda \in(0, \underline{\lambda})$.

Proof. For any $r>0$, define

$$
\hat{M}_{r}=\max \left\{f^{i}(\mathbf{x}) \mid \mathbf{x} \in \mathbb{R}_{+}^{N},\|\mathbf{x}\| \leq r, i=1, \ldots, N\right\} .
$$

By $\left(F_{2}\right)$, then $\hat{M}_{r}>0$. Let $\mathbf{u} \in \partial K_{r}$, then for $t \in[0,1]$,

$$
\|\mathbf{u}(t)\| \leq\|\mathbf{u}\|_{\infty}=r
$$

and

$$
\begin{equation*}
f^{i}(\mathbf{u}(t)) \leq \hat{M}_{r} \text { for } i=1, \ldots, N \tag{3.10}
\end{equation*}
$$

Since $T_{\lambda}(\mathbf{u}) \in K$ for $\mathbf{u} \in \partial K_{r}$, there exists a unique $\sigma_{i} \in(0,1)$ such that $T_{\lambda}^{i}(\mathbf{u})\left(\sigma_{i}\right)=\max _{t \in[0,1]} T_{\lambda}^{i}(\mathbf{u})(t)$ and $T_{\lambda}^{i}(\mathbf{u})^{\prime}\left(\sigma_{i}\right)=0$. We also consider two cases $\sigma_{i} \in\left(0, \frac{1}{2}\right]$ and $\sigma_{i} \in\left[\frac{1}{2}, 1\right)$ with the similar argument in the proof of Lemma 3.1 with aid of (3.10), we get

$$
\left\|T_{\lambda}^{i}(\mathbf{u})\right\|_{\infty} \leq \varphi^{-1}\left(\lambda \hat{M}_{r}\right) \Upsilon \text { for } i=1, \ldots, N .
$$

Define

$$
q(r)=\frac{\varphi\left(\frac{r}{N \Upsilon}\right)}{\hat{M}_{r}},
$$

then $q:(0, \infty) \rightarrow(0, \infty)$ is continuous clearly. Since $\mathbf{f}_{0}=\mathbf{f}_{\infty}=\infty$, we get

$$
\lim _{r \rightarrow 0} q(r)=\lim _{r \rightarrow \infty} q(r)=0
$$

Thus, there exists $r^{*} \in(0, \infty)$ such that

$$
\begin{equation*}
q\left(r^{*}\right)=\sup \{q(r) \mid r>0\} \triangleq \underline{\lambda} . \tag{3.11}
\end{equation*}
$$

Then for any $\lambda \in(0, \underline{\lambda})$, there exist $r_{1}, r_{2}>0$ such that $0<r_{1}<r^{*}<r_{2}<\infty$ with $q\left(r_{1}\right)=q\left(r_{2}\right)=\lambda$. Therefore, if $\mathbf{u} \in \partial K_{r_{1}}$, then for $\lambda \in(0, \underline{\lambda})$,

$$
\left\|T_{\lambda}^{i}(\mathbf{u})\right\|_{\infty} \leq \varphi^{-1}\left(\frac{\varphi\left(\frac{r_{1}}{N \Upsilon}\right)}{\hat{M}_{r_{1}}} \hat{M}_{r_{1}}\right) \Upsilon=\frac{r_{1}}{N} \text { for } i=1, \ldots, N
$$

and thus

$$
\begin{equation*}
\left\|T_{\lambda}(\mathbf{u})\right\|_{\infty}=\sum_{i=1}^{N}\left\|T_{\lambda}^{i}(\mathbf{u})\right\|_{\infty} \leq\|\mathbf{u}\|_{\infty} \text { for } \mathbf{u} \in \partial K_{r_{1}}, \lambda \in(0, \underline{\lambda}) \tag{3.12}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\left\|T_{\lambda}(\mathbf{u})\right\|_{\infty}=\sum_{i=1}^{N}\left\|T_{\lambda}^{i}(\mathbf{u})\right\|_{\infty} \leq\|\mathbf{u}\|_{\infty} \text { for } \mathbf{u} \in \partial K_{r_{2}}, \lambda \in(0, \underline{\lambda}) \tag{3.13}
\end{equation*}
$$

Let $\mathbf{f}_{0}=\mathbf{f}_{\infty}=\infty$, then $f_{0}^{i_{0}}=f_{\infty}^{j_{0}}=\infty$, where

$$
f_{0}^{i_{0}}:=\max \left\{f_{0}^{i} \mid i=1, \ldots, N\right\}, \quad f_{\infty}^{j_{0}}:=\max \left\{f_{\infty}^{i} \mid i=1, \ldots, N\right\}
$$

for some $i_{0}, j_{0} \in\{1, \ldots, N\}$. For $\lambda \in(0, \underline{\lambda})$, we can take $M=\frac{\gamma(32)}{\lambda \Gamma}>0$. Since $f_{0}^{i_{0}}=\infty$, there exists $r_{M}>0$ such that for $\mathbf{x} \in \mathbb{R}_{+}^{N}$ with $\|\mathbf{x}\| \leq r_{M}$, we have

$$
f^{i_{0}}(\mathbf{x}) \geq M \varphi(\|\mathbf{x}\|)
$$

If $\mathbf{u} \in K$ with $\|\mathbf{u}\|_{\infty} \leq r_{M}$, then by Proposition 2.4, for $t \in\left[\frac{1}{4}, \frac{3}{4}\right]$,

$$
\|\mathbf{u}(t)\| \leq\|\mathbf{u}\|_{\infty} \leq r_{M}
$$

and

$$
\begin{equation*}
f^{i_{0}}(\mathbf{u}(t)) \geq M \varphi(\|\mathbf{u}(t)\|) \geq M \varphi\left(\frac{1}{4}\|\mathbf{u}\|_{\infty}\right) . \tag{3.14}
\end{equation*}
$$

Take $0<r_{3}<\min \left\{r_{1}, r_{M}\right\}$. Then for $\mathbf{u} \in \partial K_{r_{3}}$, we get

$$
\begin{equation*}
f^{i_{0}}(\mathbf{u}(t)) \geq M \varphi(\|\mathbf{u}(t)\|) \geq M \varphi\left(\frac{1}{4}\|\mathbf{u}\|_{\infty}\right) \tag{3.15}
\end{equation*}
$$

Since $\mathbf{f}_{\infty}^{j_{0}}=\infty$, for M given above, there exists $R_{M}>0$ such that for $\mathbf{x} \in \mathbb{R}_{+}^{N}$ with $\|\mathbf{x}\| \geq R_{M}$, we have

$$
f^{j_{0}}(\mathbf{x}) \geq M \varphi(\|\mathbf{x}\|) .
$$

If $\mathbf{u} \in K$ with $\|\mathbf{u}\|_{\infty} \geq 4 R_{M}$, then by Proposition 2.4, for $t \in\left[\frac{1}{4}, \frac{3}{4}\right]$,

$$
\|\mathbf{u}(t)\|=\sum_{i=1}^{N} u_{i}(t) \geq \min _{t \in\left[\frac{1}{4}, \frac{3}{4}\right]} \sum_{i=1}^{N} u_{i}(t) \geq \frac{1}{4}\|\mathbf{u}\|_{\infty} \geq R_{M}
$$

and

$$
\begin{equation*}
f^{j_{0}}(\mathbf{u}(t)) \geq M \varphi(\|\mathbf{u}(t)\|) \geq M \varphi\left(\frac{1}{4}\|\mathbf{u}\|_{\infty}\right) \tag{3.16}
\end{equation*}
$$

Take $r_{4}>\max \left\{r_{2}, 4 R_{M}\right\}$. Then for $\mathbf{u} \in \partial K_{r_{4}}$, we get

$$
\begin{equation*}
f^{j_{0}}(\mathbf{u}(t)) \geq M \varphi(\|\mathbf{u}(t)\|) \geq M \varphi\left(\frac{1}{4}\|\mathbf{u}\|_{\infty}\right) \tag{3.17}
\end{equation*}
$$

We also consider two cases $a_{\lambda, \mathbf{u}}^{i} \geq 0$ and $a_{\lambda, \mathbf{u}}^{i}<0\left(i=i_{0}, j_{0}\right)$. Applying the same argument in the proof of Lemma 3.1 with aids of (3.15), (3.17) and by the definition of M, we get

$$
\begin{aligned}
2\left\|T_{\lambda}^{i}(\mathbf{u})\right\|_{\infty} & \geq 2 T_{\lambda}^{i}(\mathbf{u})\left(\frac{1}{2}\right)=\frac{1}{4} \varphi^{-1}\left(\lambda M \varphi\left(\frac{1}{4}\|\mathbf{u}\|_{\infty}\right) \Gamma\right) \\
& \geq \frac{1}{4} \varphi^{-1}\left(\gamma(32) \varphi\left(\frac{1}{4}\|\mathbf{u}\|_{\infty}\right)\right)
\end{aligned}
$$

Applying Remark 2.2 with $\sigma=32$ and $x=\frac{1}{4}\|\mathbf{u}\|_{\infty}$, we get

$$
2\left\|T_{\lambda}^{i}(\mathbf{u})\right\|_{\infty} \geq \frac{1}{4} \times 32 \times \frac{1}{4}\|\mathbf{u}\|_{\infty}=2\|\mathbf{u}\|_{\infty}
$$

Thus, for $i=i_{0}, j_{0}$, we have

$$
\begin{equation*}
\left\|T_{\lambda}(\mathbf{u})\right\|_{\infty} \geq\left\|T_{\lambda}^{i}(\mathbf{u})\right\|_{\infty} \geq\|\mathbf{u}\|_{\infty} \text { for } \mathbf{u} \in \partial K_{r_{j}}(j=3,4) \tag{3.18}
\end{equation*}
$$

Combining (3.12), (3.13) and (3.18), we conclude that problem $\left(P_{\lambda}\right)$ has at least two positive solutions $\mathbf{u}_{1}, \mathbf{u}_{2}$ with $r_{3} \leq\left\|\mathbf{u}_{1}\right\|_{\infty} \leq r_{1}<r_{2} \leq\left\|\mathbf{u}_{2}\right\|_{\infty} \leq r_{4}$ for $\lambda \in(0, \underline{\lambda})$.

Lemma 3.4. Assume that $(A),(H)$, and $\left(F_{1}\right)$ hold. If $\mathbf{f}_{0}=\mathbf{f}_{\infty}=\infty$, then there exists $\bar{\lambda} \in(\underline{\lambda}, \infty)$ (here $\underline{\lambda}$ is given in Lemma 3.3) such that $\left(P_{\lambda}\right)$ has no positive solution for $\lambda>\bar{\lambda}$.

Proof. Since $\mathbf{f}_{0}=\mathbf{f}_{\infty}=\infty$, we can easily get $f_{0}^{i_{0}}>0$ and $f_{\infty}^{j_{0}}>0$. Thus, there exist positive numbers $\eta_{1}, \eta_{2}, r_{1}^{\prime}$ and r_{2}^{\prime} such that $r_{1}^{\prime}<r_{2}^{\prime}, 0<\eta_{1}<f_{0}^{i_{0}}$, $0<\eta_{2}<f_{\infty}^{j_{0}}$,

$$
f^{i_{0}}(\mathbf{x}) \geq \eta_{1} \varphi(\|\mathbf{x}\|) \text { for } \mathbf{x} \in \mathbb{R}_{+}^{N},\|\mathbf{x}\| \leq r_{1}^{\prime}
$$

and

$$
f^{j_{0}}(\mathbf{x}) \geq \eta_{2} \varphi(\|\mathbf{x}\|) \text { for } \mathbf{x} \in \mathbb{R}_{+}^{N},\|\mathbf{x}\| \geq r_{2}^{\prime} .
$$

Let

$$
\begin{gathered}
\eta_{3}=\min \left\{\eta_{1}, \eta_{2}, \min \left\{\left.\frac{f^{j_{0}}(\mathbf{x})}{\varphi(\|\mathbf{x}\|)} \right\rvert\, \mathbf{x} \in \mathbb{R}_{+}^{N}, \frac{r_{1}^{\prime}}{4} \leq\|\mathbf{x}\| \leq r_{2}^{\prime}\right\},\right. \\
\left.\sup \left\{\eta \mid \eta>0, \frac{\gamma(32)}{\eta \Gamma}>\underline{\lambda}\right\}\right\}>0
\end{gathered}
$$

Then, we have

$$
\begin{equation*}
f^{i_{0}}(\mathbf{x}) \geq \eta_{3} \varphi(\|\mathbf{x}\|) \text { for } \mathbf{x} \in \mathbb{R}_{+}^{N},\|\mathbf{x}\| \leq r_{1}^{\prime} \tag{3.19}
\end{equation*}
$$

and

$$
\begin{equation*}
f^{j_{0}}(\mathbf{x}) \geq \eta_{3} \varphi(\|\mathbf{x}\|) \text { for } \mathbf{x} \in \mathbb{R}_{+}^{N},\|\mathbf{x}\| \geq \frac{r_{1}^{\prime}}{4} \tag{3.20}
\end{equation*}
$$

Assume that \mathbf{v} is a positive solution of $\left(P_{\lambda}\right)$, we prove that if $\left(P_{\lambda}\right)$ has a positive solution, then $\lambda \leq \bar{\lambda}$, where

$$
\begin{equation*}
\bar{\lambda}:=\frac{\gamma(32)}{\eta_{3} \Gamma} . \tag{3.21}
\end{equation*}
$$

Indeed, on the contrary, suppose that $\left(P_{\lambda}\right)$ has a positive solution \mathbf{v} for $\lambda>\bar{\lambda}$. If $\|\mathbf{v}\|_{\infty} \leq r_{1}^{\prime}$, then by (3.19) and Proposition 2.4, we get for $t \in\left[\frac{1}{4}, \frac{3}{4}\right]$,

$$
\begin{equation*}
f^{i_{0}}(\mathbf{v}(t)) \geq \eta_{3} \varphi(\|\mathbf{v}(t)\|) \geq \eta_{3} \varphi\left(\frac{1}{4}\|\mathbf{v}\|_{\infty}\right) \tag{3.22}
\end{equation*}
$$

On the other hand, if $\|\mathbf{v}\|_{\infty}>r_{1}^{\prime}$, then by Proposition 2.4 and (3.20),

$$
\|\mathbf{v}(t)\|=\sum_{i=1}^{N} v_{i}(t) \geq \min _{t \in\left[\frac{1}{4}, \frac{3}{4}\right]} \sum_{i=1}^{N} v_{i}(t) \geq \frac{1}{4}\|\mathbf{v}\|_{\infty}>\frac{r_{1}^{\prime}}{4}
$$

and

$$
\begin{equation*}
f^{j_{0}}(\mathbf{v}(t)) \geq \eta_{3} \varphi(\|\mathbf{v}(t)\|) \geq \eta_{3} \varphi\left(\frac{1}{4}\|\mathbf{v}\|_{\infty}\right) \tag{3.23}
\end{equation*}
$$

for $t \in\left[\frac{1}{4}, \frac{3}{4}\right]$. Since $\mathbf{v}(t)=T_{\lambda}(\mathbf{v})(t)$ for $t \in[0,1]$, applying the same argument in the proof of Lemma 3.1 with aids of (3.22), (3.23) and Remark 2.2 with $\sigma=32, x=\frac{1}{4}\|\mathbf{v}\|_{\infty}$, then for $\lambda>\bar{\lambda}$,

$$
\begin{aligned}
\|\mathbf{v}\|_{\infty} & =\left\|T_{\lambda}(\mathbf{v})\right\|_{\infty} \geq \frac{1}{8} \varphi^{-1}\left(\lambda \eta_{3} \varphi\left(\frac{1}{4}\|\mathbf{v}\|_{\infty}\right) \Gamma\right) \\
& >\frac{1}{8} \varphi^{-1}\left(\gamma(32) \varphi\left(\frac{1}{4}\|\mathbf{v}\|_{\infty}\right)\right) \\
& \geq \frac{1}{8} \times 32 \times \frac{1}{4}\|\mathbf{v}\|_{\infty}=\|\mathbf{v}\|_{\infty}
\end{aligned}
$$

which is a contradiction.
Proof of Theorem 1.1. Theorem 1.1(1) follows from Lemma 3.1 and Lemma 3.2. Theorem 1.1(2) follows from Lemma 3.3 and Lemma 3.4.

Lemma 3.5. Assume that $(A),(H),\left(F_{1}\right),\left(F_{3}\right)$, and $\mathbf{f}_{0}=\infty$ hold. If $\left(P_{\lambda}\right)$ has a positive solution at $\lambda=\hat{\lambda}$, then $\left(P_{\lambda}\right)$ has at least one positive solution for $\lambda \in(0, \hat{\lambda})$.

Proof. Let $\hat{\mathbf{u}}$ be a positive solution of $\left(P_{\lambda}\right)$ at $\lambda=\hat{\lambda}$ and let $\lambda \in(0, \hat{\lambda})$ be fixed. Consider the following modified problem

$$
\left\{\begin{array}{l}
-\boldsymbol{\Phi}\left(\mathbf{u}^{\prime}\right)^{\prime}=\lambda \mathbf{h}(t) \cdot \mathbf{f}_{*}(\mathbf{u}), \quad t \in(0,1) \tag{*}\\
\mathbf{u}(0)=0=\mathbf{u}(1)
\end{array}\right.
$$

where $\mathbf{f}_{*}=\left(f_{*}^{1}, \ldots, f_{*}^{N}\right)$ and each $f_{*}^{i}: \mathbb{R}_{+}^{N} \rightarrow \mathbb{R}_{+}$is defined by $f_{*}^{i}\left(u_{1}, \ldots, u_{N}\right)=$ $f^{i}\left(\gamma_{1}\left(u_{1}\right), \ldots, \gamma_{N}\left(u_{N}\right)\right)$ with

$$
\gamma_{i}\left(u_{i}\right)=\left\{\begin{array}{l}
\hat{u_{i}}, \text { if } u_{i}>\hat{u_{i}} \\
u_{i}, \text { if } 0 \leq u_{i} \leq \hat{u_{i}}
\end{array}\right.
$$

First, we show that $\left(P_{\lambda}^{*}\right)$ has at least one positive solution. Define T_{λ}^{*} the same as T_{λ} replacing \mathbf{f} by \mathbf{f}_{*}. Then $T_{\lambda}^{*}: K \rightarrow K$ is also completely continuous. By the fact that \mathbf{f}_{*} is bounded, there exists $R>0$ such that $\left\|T_{\lambda}^{*}(\mathbf{u})\right\|_{\infty} \leq R$, for any $\mathbf{u} \in K$, i.e.,

$$
\begin{equation*}
\left\|T_{\lambda}^{*}(\mathbf{u})\right\|_{\infty} \leq\|\mathbf{u}\|_{\infty} \text { for } \mathbf{u} \in \partial K_{R} \tag{3.24}
\end{equation*}
$$

Let $\mathbf{f}_{0}=\infty$, then $f_{0}^{i_{0}}=\infty$. Applying the similar argument in Lemma 3.3 with $0<r<\min \left\{\|\hat{\mathbf{u}}\|_{\infty}, R\right\}$, we get

$$
\begin{equation*}
\left\|T_{\lambda}^{*}(\mathbf{u})\right\|_{\infty} \geq\left\|\left(T_{\lambda}^{i_{0}}\right)^{*}(\mathbf{u})\right\|_{\infty} \geq\|\mathbf{u}\|_{\infty} \tag{3.25}
\end{equation*}
$$

for $\mathbf{u} \in \partial K_{r}$. Combing (3.24) and (3.25), we conclude that $\left(P_{\lambda}^{*}\right)$ has at least one solution \mathbf{u} with $r \leq\|\mathbf{u}\|_{\infty} \leq R$, i.e., \mathbf{u} is a positive solution.

Next, we show that if \mathbf{u} is a solution of $\left(P_{\lambda}^{*}\right)$, then $\mathbf{0} \leq \mathbf{u}(t) \leq \hat{\mathbf{u}}(t)$ for $t \in[0,1]$. If it is true, then $\left(P_{\lambda}^{*}\right)$ and $\left(P_{\lambda}\right)$ are equivalent and the proof is complete. Clearly, $\mathbf{u}(t) \geq \mathbf{0}$ for $t \in[0,1]$. We also need show that $\mathbf{u}(t) \leq \hat{\mathbf{u}}(t)$ for $t \in[0,1]$. If it is not true, then $u_{i}(t) \not \leq \hat{u}_{i}(t)$ for some $i \in\{1, \ldots, N\}$. By the boundary values of u_{i} and $\hat{u_{i}}$, there exist $T_{1}, T_{2} \in(0,1)$ such that

$$
u_{i}(t)-\hat{u}_{i}(t)>0 \text { on }\left(T_{1}, T_{2}\right) \text { and } u_{i}\left(T_{1}\right)-\hat{u_{i}}\left(T_{1}\right)=u_{i}\left(T_{2}\right)-\hat{u_{i}}\left(T_{2}\right)=0 .
$$

Thus, by $\left(F_{3}\right)$, we have for $t \in\left(T_{1}, T_{2}\right)$,

$$
\begin{aligned}
-\varphi\left(u_{i}^{\prime}(t)\right)^{\prime} & =\lambda h_{i}(t) f_{*}^{i}\left(u_{1}, \ldots, u_{i}, \ldots, u_{N}\right) \\
& =\lambda h_{i}(t) f^{i}\left(\gamma_{1}\left(u_{1}\right), \ldots, \hat{u_{i}}, \ldots, \gamma_{i}\left(u_{N}\right)\right) \\
& \leq \hat{\lambda} h_{i}(t) f^{i}\left(\hat{u_{1}}, \ldots, \hat{u_{i}}, \ldots, \hat{u_{N}}\right) \\
& =-\varphi\left(\hat{u}_{i}^{\prime}(t)\right)^{\prime},
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
\varphi\left(u_{i}^{\prime}(t)\right)^{\prime} \geq \varphi\left(\hat{u}_{i}^{\prime}(t)\right)^{\prime} \tag{3.26}
\end{equation*}
$$

Since $u_{i}-\hat{u_{i}} \in C_{0}\left[T_{1}, T_{2}\right]$, there exist $t_{0} \in\left(T_{1}, T_{2}\right)$ and $0<\delta<T_{2}-t_{0}$ such that

$$
u_{i}\left(t_{0}\right)-\hat{u}_{i}\left(t_{0}\right)=\max _{t \in\left[T_{1}, T_{2}\right]}\left\{u_{i}(t)-\hat{u_{i}}(t)\right\},
$$

and

$$
u_{i}^{\prime}\left(t_{0}\right)-\hat{u}_{i}^{\prime}\left(t_{0}\right)=0, \quad u_{i}^{\prime}(t)-\hat{u}_{i}^{\prime}(t)<0, \quad t \in\left(t_{0}, t_{0}+\delta\right) .
$$

Integrating both sides of (3.26) from t_{0} to $t \in\left(t_{0}, t_{0}+\delta\right)$, then we get

$$
\varphi\left(u_{i}^{\prime}(t)\right)-\varphi\left(u_{i}^{\prime}\left(t_{0}\right)\right) \geq \varphi\left(\hat{u}_{i}^{\prime}(t)\right)-\varphi\left(\hat{u}_{i}^{\prime}\left(t_{0}\right)\right) .
$$

Since φ is increasing, we have $u_{i}^{\prime}(t) \geq \hat{u}_{i}{ }^{\prime}(t), t \in\left(t_{0}, t_{0}+\delta\right)$, which is a contradiction.

Lemma 3.6. Assume that $(A),(H),\left(F_{1}\right)$, and $\mathbf{f}_{\infty}=\infty$ hold. Let I be a compact interval of $(0, \infty)$. Then there exists a constant $b_{I}>0$ such that all possible positive solutions \mathbf{u} of $\left(P_{\lambda}\right)$ at $\lambda \in I$ satisfy $\|\mathbf{u}\|_{\infty}<b_{I}$.
Proof. Suppose on the contrary that there exists a sequence $\left\{\mathbf{u}_{n}\right\}$ of positive solutions of $\left(P_{\lambda_{n}}\right)$ with $\left\{\lambda_{n}\right\} \subset I=[\alpha, \beta] \subset(0, \infty)$ and $\left\|\mathbf{u}_{n}\right\|_{\infty} \rightarrow \infty$ as $n \rightarrow \infty$. Take $M=\frac{2 \gamma(32)}{\alpha \Gamma}$. Let $\mathbf{f}_{\infty}=\infty$, then $f_{\infty}^{j_{0}}=\infty$. Since $f_{\infty}^{j_{0}}=\infty$, for M given above, there exists $R_{M}>0$ such that for $\mathbf{x} \in \mathbb{R}_{+}^{N}$ with $\|\mathbf{x}\| \geq R_{M}$, we have

$$
f^{j_{0}}(\mathbf{x}) \geq M \varphi(\|\mathbf{x}\|) .
$$

From the assumption, we can get $\left\|\mathbf{u}_{n}\right\|_{\infty} \geq 4 R_{M}$ for sufficiently large n. Thus, by Proposition 2.4, we have

$$
\left\|\mathbf{u}_{n}(t)\right\|=\sum_{i=1}^{N} u_{i}^{n}(t) \geq \min _{t \in\left[\frac{1}{4}, \frac{3}{4}\right]} \sum_{i=1}^{N} u_{i}^{n}(t) \geq \frac{1}{4}\left\|\mathbf{u}_{n}\right\|_{\infty} \geq R_{M}
$$

and

$$
\begin{equation*}
f^{j_{0}}\left(\mathbf{u}_{n}(t)\right) \geq M \varphi\left(\left\|\mathbf{u}_{n}(t)\right\|\right) \geq M \varphi\left(\frac{1}{4}\left\|\mathbf{u}_{n}\right\|_{\infty}\right) \tag{3.27}
\end{equation*}
$$

for $t \in\left[\frac{1}{4}, \frac{3}{4}\right]$ and sufficiently large n. Since $\mathbf{u}_{n}(t)=T_{\lambda_{n}}\left(\mathbf{u}_{n}\right)(t)$ for $t \in[0,1]$, applying the same argument in Lemma 3.1 with aid of (3.27) and by the definition of M and Remark 2.2 with $\sigma=32, x=\frac{1}{4}\left\|\mathbf{u}_{n}\right\|_{\infty}$, we get

$$
\begin{aligned}
\left\|\mathbf{u}_{n}\right\|_{\infty} & =\left\|T_{\lambda_{n}}\left(\mathbf{u}_{n}\right)\right\|_{\infty} \geq \frac{1}{8} \varphi^{-1}\left(\lambda_{n} M \varphi\left(\frac{1}{4}\left\|\mathbf{u}_{n}\right\|_{\infty}\right) \Gamma\right) \\
& \geq \frac{1}{8} \varphi^{-1}\left(\alpha M \varphi\left(\frac{1}{4}\left\|\mathbf{u}_{n}\right\|_{\infty}\right) \Gamma\right) \\
& \geq \frac{1}{8} \varphi^{-1}\left(2 \gamma(32) \varphi\left(\frac{1}{4}\left\|\mathbf{u}_{n}\right\|_{\infty}\right)\right) \\
& >\frac{1}{8} \varphi^{-1}\left(\gamma(32) \varphi\left(\frac{1}{4}\left\|\mathbf{u}_{n}\right\|_{\infty}\right)\right) \\
& \geq \frac{1}{8} \times 32 \times \frac{1}{4}\left\|\mathbf{u}_{n}\right\|_{\infty}=\left\|\mathbf{u}_{n}\right\|_{\infty}
\end{aligned}
$$

for $\lambda_{n} \in I$ with sufficiently large n. This is a contradiction.
Proof of Theorem 1.2. Define

$$
\begin{equation*}
\lambda^{*}:=\sup \left\{\lambda \mid\left(P_{\lambda}\right) \text { has at least one positive solution }\right\} . \tag{3.28}
\end{equation*}
$$

(3.29) $\quad \lambda_{*}:=\sup \left\{\tilde{\lambda} \mid\left(P_{\lambda}\right)\right.$ has at least two positive solutions for $\left.\lambda \in(0, \tilde{\lambda})\right\}$.

By Lemma 3.3 and Lemma 3.4, λ_{*} and λ^{*} are both well-defined and $0<\lambda_{*} \leq$ $\lambda^{*} \leq \bar{\lambda}$. By the definitions of λ_{*} and λ^{*}, and Lemma 3.5, we get that $\left(P_{\lambda}\right)$ has at least two positive solutions for $\lambda \in\left(0, \lambda_{*}\right)$, one positive solution for $\lambda \in\left[\lambda_{*}, \lambda^{*}\right)$, and no positive solution for $\lambda>\lambda^{*}$.

Finally, it is enough to show that $\left(P_{\lambda}\right)$ has at least one positive solution at $\lambda=\lambda^{*}$. By the definition of λ^{*} and Lemma 3.4, we can choose a sequence $\left\{\lambda_{n}\right\}$ with $\frac{\lambda^{*}}{2} \leq \lambda_{n}<\lambda^{*} \leq \bar{\lambda}$ such that $\lambda_{n} \rightarrow \lambda^{*}$ as $n \rightarrow \infty$, and then by Lemma 3.6 with $I=\left[\frac{\lambda^{*}}{2}, \bar{\lambda}\right]$, there exists $b_{I}>0$ such that the corresponding positive solutions \mathbf{u}_{n} satisfying $\left\|\mathbf{u}_{n}\right\|_{\infty}<b_{I}$, i.e., $\left\{\mathbf{u}_{n}\right\}$ is bounded.

By the fact that $T_{\lambda_{n}}$ is completely continuous, we get $\left\{T_{\lambda_{n}}\left(\mathbf{u}_{n}\right)\right\}$ is equicontinuous. This implies that $\left\{\mathbf{u}_{n}\right\}$ is equicontinuous, since $\mathbf{u}_{n}=T_{\lambda_{n}}\left(\mathbf{u}_{n}\right)$. By the Ascoli-Arzela theorem, $\left\{\mathbf{u}_{n}\right\}$ is relatively compact. Hence, there exists a convergent subsequence $\left\{\mathbf{u}_{n}\right\}$, denoted again by $\left\{\mathbf{u}_{n}\right\}$ and $\mathbf{u}^{*} \in K$ such that $\mathbf{u}_{n} \rightarrow \mathbf{u}^{*}$ as $n \rightarrow \infty$. Since $\mathbf{u}_{n}=T_{\lambda_{n}}\left(\mathbf{u}_{n}\right)$, by the Lebesgue Dominated Convergence Theorem, we can get $\mathbf{u}^{*}=T_{\lambda^{*}}\left(\mathbf{u}^{*}\right)$, i.e., \mathbf{u}^{*} is a solution of $\left(P_{\lambda^{*}}\right)$.

Moreover, by $\mathbf{f}_{0}=\infty$ and applying the similar argument in Lemma 3.6, we see that $\mathbf{u}^{*} \not \equiv \mathbf{0}$. Therefore mainly due to condition $\left(F_{2}\right)$ and the Maximal Principle, it is not hard to see that \mathbf{u}^{*} is a positive solution of $\left(P_{\lambda^{*}}\right)$.

4. Applications

In this section, we give some examples applicable to our main results.
Example 4.1. Consider the following scalar φ-Laplacian problem
$\left(E_{1}\right)$

$$
\left\{\begin{array}{l}
\varphi\left(u^{\prime}\right)^{\prime}+\lambda t^{-\frac{3}{2}} f(u)=0, \quad t \in(0,1) \\
u(0)=0=u(1)
\end{array}\right.
$$

where $\varphi(x)=|x| x+x, x \in \mathbb{R}$, and

$$
f(u)= \begin{cases}u^{3}, & \text { if } 0 \leq u<1 \\ u, & \text { if } u \geq 1\end{cases}
$$

We easily see that φ is an odd increasing homeomorphism. Define functions ψ and γ given as

$$
\psi(\sigma)= \begin{cases}\sigma^{2}, & \text { if } 0<\sigma \leq 1 \\ \sigma, & \text { if } \sigma>1\end{cases}
$$

and

$$
\gamma(\sigma)= \begin{cases}1, & \text { if } 0<\sigma \leq 1 \\ \sigma^{2}, & \text { if } \sigma>1\end{cases}
$$

Then $\psi, \gamma:(0, \infty) \rightarrow(0, \infty)$ and ψ is an increasing homeomorphism with

$$
\psi^{-1}(\sigma)= \begin{cases}\sigma^{\frac{1}{2}}, & \text { if } 0<\sigma \leq 1 \\ \sigma, & \text { if } \sigma>1\end{cases}
$$

We may see that $\left(E_{1}\right)$ satisfies assumptions $(A),(H),\left(F_{1}\right)$ and $\left(F_{2}\right)$ (see Xu and Lee [22] for details). In addition,

$$
\begin{aligned}
f_{0} & =\lim _{\|u\| \rightarrow 0} \frac{f(u)}{\varphi(\|u\|)}=\lim _{\|u\| \rightarrow 0} \frac{u^{3}}{u^{2}+u}=0 \\
f_{\infty} & =\lim _{\|u\| \rightarrow \infty} \frac{f(u)}{\varphi(\|u\|)}=\lim _{\|u\| \rightarrow \infty} \frac{u}{u^{2}+u}=0
\end{aligned}
$$

For any $r>0$,

$$
\hat{m}_{r}=\max \left\{f(x) \mid x \in \mathbb{R}_{+}, \frac{r}{4} \leq x \leq r\right\}=f(r)
$$

where

$$
f(r)= \begin{cases}r^{3}, & \text { if } 0<r<1 \\ r, & \text { if } r \geq 1\end{cases}
$$

If $0<r<1$, then

$$
p(r)=\frac{\varphi(8 r)}{\hat{m}_{r} \Gamma}=\frac{(8 r)^{2}+8 r}{0.49 r^{3}}=\frac{64 r+8}{0.49 r^{2}},
$$

and

$$
p^{\prime}(r)=\frac{-31.36 r-7.84}{0.2401 r^{3}}<0 .
$$

If $r \geq 1$, then

$$
p(r)=\frac{\varphi(8 r)}{\hat{m}_{r} \Gamma}=\frac{(8 r)^{2}+8 r}{0.49 r}=\frac{64 r+8}{0.49}
$$

and

$$
p^{\prime}(r)=\frac{64}{0.49}>0
$$

Thus, we get

$$
\bar{\lambda}=\inf \{p(r) \mid r>0\}=p(1)=\frac{64 \times 1+8}{0.49} \doteq 146.94
$$

Since $f_{0}=f_{\infty}=0$, there exist $\beta_{1}=1>f_{0}, \beta_{2}=\frac{1}{10000}>f_{\infty}, R_{1}=1$, $R_{2}=10000$ such that

$$
f(x) \leq \varphi(x) \text { for } 0 \leq x \leq 1,
$$

and

$$
f(x) \leq \frac{1}{10000} \varphi(x) \text { for } x \geq 10000
$$

Since for $x \geq 1$,

$$
\frac{f(x)}{\varphi(x)}=\frac{x}{x^{2}+x}=\frac{1}{x+1}
$$

we get

$$
\max \left\{\left.\frac{f(x)}{\varphi(x)} \right\rvert\, x \in \mathbb{R}_{+}, 1 \leq x \leq 10000\right\}=\frac{1}{2} .
$$

From

$$
\frac{\psi\left(\frac{1}{N \Upsilon}\right)}{\beta}<\bar{\lambda}
$$

we get

$$
\frac{\left(\frac{1}{1 \times 1.46}\right)^{2}}{\beta}<146.94
$$

i.e., $\beta>0.0031$ and thus

$$
\inf \left\{\beta \mid \beta>0, \frac{\psi\left(\frac{1}{N \Upsilon}\right)}{\beta}<\bar{\lambda}\right\}>0.0031
$$

Therefore, we obtain

$$
\begin{gathered}
\beta=\max \left\{\beta_{1}, \beta_{2}, \max \left\{\left.\frac{f(x)}{\varphi(x)} \right\rvert\, x \in \mathbb{R}_{+}, 1 \leq x \leq 10000\right\}\right. \\
\left.\inf \left\{\beta \mid \beta>0, \frac{\psi\left(\frac{1}{N \Upsilon}\right)}{\beta}<\bar{\lambda}\right\}\right\}=1
\end{gathered}
$$

and

$$
\underline{\lambda}=\frac{\psi\left(\frac{1}{N \Upsilon}\right)}{\beta}=\frac{\left(\frac{1}{1 \times 1.46}\right)^{2}}{1}=0.46 .
$$

Consequently, by Theorem 1.1(1), we get the following Conclusion.
Conclusion. Problem $\left(E_{1}\right)$ has at least two positive solutions for $\lambda>146.94$, and no positive solution for $\lambda \in(0,0.46)$.

Example 4.2. Consider the following φ-Laplacian system

$$
\left\{\begin{array}{l}
\varphi\left(u^{\prime}\right)^{\prime}+\lambda t^{-\frac{5}{4}} f^{1}(u, v)=0 \tag{2}\\
\varphi\left(v^{\prime}\right)^{\prime}+\lambda t^{-\frac{6}{5}} f^{2}(u, v)=0, \quad t \in(0,1) \\
u(0)=v(0)=u(1)=v(1)=0
\end{array}\right.
$$

where $\varphi(x)=x^{\frac{1}{3}}, x \in \mathbb{R}, f^{1}(u, v)=e^{-u}(v+1)^{\frac{1}{2}}, f^{2}(u, v)=(u+v+2)^{\frac{1}{2}}$. Then φ is an odd increasing homeomorphism. By the homogeneity of φ, taking $\psi(\sigma)=\gamma(\sigma) \equiv \varphi(\sigma)$. We can easily check that $\left(E_{2}\right)$ satisfies assumptions (A), $(H),\left(F_{1}\right)$ and $\left(F_{2}\right)$ (see Xu and Lee [22] for details) and exactly obtain

$$
\Gamma=\min \left\{\left.\min \left\{\int_{\frac{1}{4}}^{\frac{1}{2}} h_{i}(\tau) d \tau, \int_{\frac{1}{2}}^{\frac{3}{4}} h_{i}(\tau) d \tau\right\} \right\rvert\, i=1,2\right\}=0.4473
$$

In fact,

$$
\begin{aligned}
\int_{\frac{1}{4}}^{\frac{1}{2}} h_{1}(\tau) d \tau & =\int_{\frac{1}{4}}^{\frac{1}{2}} \tau^{-\frac{5}{4}} d \tau \\
& =-\left.4 \tau^{-\frac{1}{4}}\right|_{\frac{1}{4}} ^{\frac{1}{2}}=-4\left[\left(\frac{1}{2}\right)^{-\frac{1}{4}}-\left(\frac{1}{4}\right)^{-\frac{1}{4}}\right]=-4\left(2^{\frac{1}{4}}-4^{\frac{1}{4}}\right) \doteq 0.9000, \\
\int_{\frac{1}{2}}^{\frac{3}{4}} h_{1}(\tau) d \tau & =\int_{\frac{1}{2}}^{\frac{3}{4}} \tau^{-\frac{5}{4}} d \tau \\
& =-\left.4 \tau^{-\frac{1}{4}}\right|_{\frac{1}{2}} ^{\frac{3}{4}}=-4\left[\left(\frac{3}{4}\right)^{-\frac{1}{4}}-\left(\frac{1}{2}\right)^{-\frac{1}{4}}\right]=-4\left(\left(\frac{3}{4}\right)^{-\frac{1}{4}}-2^{\frac{1}{4}}\right) \doteq 0.4585, \\
& =-\left.5 \tau^{-\frac{1}{5}}\right|_{\frac{1}{4}} ^{\frac{1}{4}}=-5\left[\left(\frac{1}{2}\right)^{-\frac{1}{5}}-\left(\frac{1}{4}\right)^{-\frac{1}{5}}\right]=-5\left(2^{\frac{1}{5}}-4^{\frac{1}{5}}\right) \doteq 0.8540, \\
\int_{\frac{1}{2}}^{\frac{1}{2}} h_{2}(\tau) d \tau & =\int_{\frac{1}{2}}^{\frac{1}{2}} \tau^{-\frac{6}{5}} d \tau \\
& =\int_{\frac{1}{2}}^{\frac{1}{4}} \tau^{-\frac{6}{5}} d \tau \\
& =-\left.5 \tau^{-\frac{1}{5}}\right|_{\frac{1}{2}} ^{\frac{3}{4}}=-5\left[\left(\frac{3}{4}\right)^{-\frac{1}{5}}-\left(\frac{1}{2}\right)^{-\frac{1}{5}}\right]=-5\left(\left(\frac{3}{4}\right)^{-\frac{1}{5}}-2^{\frac{1}{5}}\right) \doteq 0.4473, \\
\Upsilon & =\max \left\{\max \left\{H_{0}^{i}, H_{1}^{i}\right\} \mid i=1,2\right\}=53.8174 .
\end{aligned}
$$

In fact,

$$
\begin{aligned}
& H_{0}^{1}=\int_{0}^{\frac{1}{2}} \psi^{-1}\left(\int_{s}^{\frac{1}{2}} h_{1}(\tau) d \tau\right) d s=\int_{0}^{\frac{1}{2}}\left(\int_{s}^{\frac{1}{2}} \tau^{-\frac{5}{4}} d \tau\right)^{3} d s \doteq 53.8174 \\
& H_{1}^{1}=\int_{\frac{1}{2}}^{1} \psi^{-1}\left(\int_{\frac{1}{2}}^{s} h_{1}(\tau) d \tau\right) d s=\int_{\frac{1}{2}}^{1}\left(\int_{\frac{1}{2}}^{s} \tau^{-\frac{5}{4}} d \tau\right)^{3} d s \doteq 0.0690 \\
& H_{0}^{2}=\int_{0}^{\frac{1}{2}} \psi^{-1}\left(\int_{s}^{\frac{1}{2}} h_{2}(\tau) d \tau\right) d s=\int_{0}^{\frac{1}{2}}\left(\int_{s}^{\frac{1}{2}} \tau^{-\frac{6}{5}} d \tau\right)^{3} d s \doteq 23.6831 \\
& H_{1}^{2}=\int_{\frac{1}{2}}^{1} \psi^{-1}\left(\int_{\frac{1}{2}}^{s} h_{2}(\tau) d \tau\right) d s=\int_{\frac{1}{2}}^{1}\left(\int_{\frac{1}{2}}^{s} \tau^{-\frac{6}{5}} d \tau\right)^{3} d s \doteq 0.0648
\end{aligned}
$$

In addition,

$$
\begin{aligned}
f_{0}^{1}= & \lim _{\|(u, v)\| \rightarrow 0} \frac{f^{1}(u, v)}{\varphi(\|(u, v)\|)} \\
= & \lim _{\|(u, v)\| \rightarrow 0} \frac{e^{-u}(v+1)^{\frac{1}{2}}}{(u+v)^{\frac{1}{3}}}=\lim _{\|(u, v)\| \rightarrow 0} \frac{(v+1)^{\frac{1}{2}}}{e^{u}(u+v)^{\frac{1}{3}}}=\infty, \\
0 \leq f_{\infty}^{1}= & \lim _{\|(u, v)\| \rightarrow \infty} \frac{f^{1}(u, v)}{\varphi(\|(u, v)\|)}=\lim _{\|(u, v)\| \rightarrow \infty} \frac{e^{-u}(v+1)^{\frac{1}{2}}}{(u+v)^{\frac{1}{3}}} \\
& \leq \lim _{\|(u, v)\| \rightarrow \infty} \frac{(v+1)^{\frac{1}{2}}}{(u+v)^{\frac{1}{3}}} \leq \lim _{\|(u, v)\| \rightarrow \infty} \frac{(u+v+1)^{\frac{1}{2}}}{(u+v)^{\frac{1}{3}}} \\
= & \lim _{\|(u, v)\| \rightarrow \infty} \frac{(u+v+1)^{\frac{1}{3}}(u+v+1)^{\frac{1}{6}}}{(u+v)^{\frac{1}{3}}} \\
& =\lim _{\|(u, v)\| \rightarrow \infty} \\
f_{0}^{2}= & \lim _{\|(u, v)\| \rightarrow 0} \frac{\left(1+\frac{1}{u+v}\right)^{\frac{1}{3}}(u+v+1)^{\frac{1}{6}}=\infty}{\varphi(\|(u, v)}=\lim _{\|(u, v)\| \rightarrow 0} \frac{(u+v) \|)}{(u+v)^{\frac{1}{3}}}=\infty, \\
f_{\infty}^{2}= & \lim _{\|(u, v)\| \rightarrow \infty} \frac{f^{2}(u, v)}{\varphi(\|(u, v)\|)}=\lim _{\|(u, v)\| \rightarrow \infty} \frac{(u+v+2)^{\frac{1}{2}}}{(u+v)^{\frac{1}{3}}} \\
\geq & \lim _{\|(u, v)\| \rightarrow \infty}(u+v)^{\frac{1}{6}}=\infty .
\end{aligned}
$$

Thus,

$$
\mathbf{f}_{0}=f_{0}^{1}+f_{0}^{2}=\infty, \quad \mathbf{f}_{\infty}=f_{\infty}^{1}+f_{\infty}^{2}=\infty
$$

For any $r>0$,

$$
\hat{M}_{r}=\max \left\{f^{i}(\mathbf{x}) \mid \mathbf{x} \in \mathbb{R}_{+}^{2},\|\mathbf{x}\| \leq r, i=1,2\right\}=(r+2)^{\frac{1}{2}}
$$

Then we can easily get

$$
q(r)=\frac{\varphi\left(\frac{r}{N \Upsilon}\right)}{\hat{M}_{r}}=\frac{\varphi\left(\frac{1}{N \Upsilon}\right) \varphi(r)}{\hat{M}_{r}}=\frac{\left(\frac{1}{2 \times 53.8174}\right)^{\frac{1}{3}} r^{\frac{1}{3}}}{(r+2)^{\frac{1}{2}}} \doteq \frac{0.2102 r^{\frac{1}{3}}}{(r+2)^{\frac{1}{2}}},
$$

and

$$
q^{\prime}(r) \begin{cases}>0, & \text { if } 0<r<4, \\ =0, & \text { if } r=4, \\ <0, & \text { if } r>4\end{cases}
$$

Thus, we get

$$
\underline{\lambda}=\sup \{q(r) \mid r>0\}=q(4) \doteq 0.1362 .
$$

Since $f_{0}^{2}=f_{\infty}^{2}=\infty$, there exist $\eta_{1}=1<f_{0}^{2}, \eta_{2}=10<f_{\infty}^{2}, r_{1}^{\prime}=1, r_{2}^{\prime}=10^{6}$ such that

$$
f^{2}(\mathbf{x}) \geq \varphi(\|\mathbf{x}\|) \text { for } \mathbf{x} \in \mathbb{R}_{+}^{2},\|\mathbf{x}\| \leq 1
$$

and

$$
f^{2}(\mathbf{x}) \geq 10 \varphi(\|\mathbf{x}\|) \text { for } \mathbf{x} \in \mathbb{R}_{+}^{2},\|\mathbf{x}\| \geq 10^{6}
$$

Since

$$
\frac{f^{2}(\mathbf{x})}{\varphi(\|\mathbf{x}\|)}=\frac{(\|\mathbf{x}\|+2)^{\frac{1}{2}}}{\|\mathbf{x}\|^{\frac{1}{3}}}
$$

we get

$$
\min \left\{\left.\frac{f^{2}(\mathbf{x})}{\varphi(\|\mathbf{x}\|)} \right\rvert\, \mathbf{x} \in \mathbb{R}_{+}^{2}, \frac{1}{4} \leq\|\mathbf{x}\| \leq 10^{6}\right\}=\frac{(4+2)^{\frac{1}{2}}}{4^{\frac{1}{3}}} \doteq 1.5438
$$

From

$$
\frac{\gamma(32)}{\eta \Gamma}>\underline{\lambda},
$$

we get

$$
\frac{3.1748}{\eta \cdot 0.4473}>0.1362
$$

i.e., $\eta<52.1123$ and thus

$$
\sup \left\{\eta \mid \eta>0, \frac{\gamma(32)}{\eta \Gamma}>\underline{\lambda}\right\}<52.1123
$$

Therefore, we obtain

$$
\begin{gathered}
\eta_{3}=\min \left\{\eta_{1}, \eta_{2}, \min \left\{\left.\frac{f^{2}(\mathbf{x})}{\varphi(\|\mathbf{x}\|)} \right\rvert\, \mathbf{x} \in \mathbb{R}_{+}^{2}, \frac{1}{4} \leq\|\mathbf{x}\| \leq 10^{6}\right\}\right. \\
\left.\sup \left\{\eta \mid \eta>0, \frac{\gamma(32)}{\eta \Gamma}>\underline{\lambda}\right\}\right\}=1
\end{gathered}
$$

and

$$
\bar{\lambda}=\frac{\gamma(32)}{\eta_{3} \Gamma}=\frac{3.1748}{1 \times 0.4473} \doteq 7.0977 .
$$

Consequently, by Theorem 1.1(2), we get the following conclusion.

Conclusion. Problem $\left(E_{2}\right)$ has at least two positive solutions for $\lambda \in(0,0.1362)$, and no positive solution for $\lambda>7.0977$.

Clearly, problem $\left(E_{2}\right)$ also satisfies assumption $\left(F_{3}\right)$. By Theorem 1.2, there must exist $\lambda^{*} \geq \lambda_{*}>0$ such that problem $\left(E_{2}\right)$ has at least two positive solutions for $\lambda \in\left(0, \lambda_{*}\right)$, one positive solution for $\lambda \in\left[\lambda_{*}, \lambda^{*}\right]$, and no positive solution for $\lambda>\lambda^{*}$.

Acknowledgment. The first author was supported by the National Research Foundation of Korea, Grant funded by the Korea Government (MEST)(NRF 2016R1D1A1B04931741).

References

[1] R. P. Agarwal, H. Lü, and D. O'Regan, Eigenvalues and the one-dimensional pLaplacian, J. Math. Anal. Appl. 266 (2002), no. 2, 383-400. https://doi.org/10.1006/ jmaa. 2001. 7742
[2] R. P. Agarwal, D. O'Regan, and S. Staněk, General existence principles for nonlocal boundary value problems with ϕ-Laplacian and their applications, Abstr. Appl. Anal. 2006 (2006), Art. ID 96826, 30 pp. https://doi.org/10.1155/AAA/2006/96826
[3] , Positive and dead core solutions of singular Dirichlet boundary value problems with ϕ-Laplacian, Comput. Math. Appl. 54 (2007), no. 2, 255-266. https://doi.org/ 10.1016/j.camwa.2006.12.026
[4] , Dead cores of singular Dirichlet boundary value problems with ϕ-Laplacian, Appl. Math. 53 (2008), no. 4, 381-399. https://doi.org/10.1007/s10492-008-0031-z
[5] D. Bai and Y. Chen, Three positive solutions for a generalized Laplacian boundary value problem with a parameter, Appl. Math. Comput. 219 (2013), no. 9, 4782-4788. https://doi.org/10.1016/j.amc.2012.10.100
[6] X. Cheng and H. Lü, Multiplicity of positive solutions for a $\left(p_{1}, p_{2}\right)$-Laplacian system and its applications, Nonlinear Anal. Real World Appl. 13 (2012), no. 5, 2375-2390. https://doi.org/10.1016/j.nonrwa.2012.02.004
[7] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985. https:// doi.org/10.1007/978-3-662-00547-7
[8] J. I. Díaz, Nonlinear partial differential equations and free boundaries. Vol. I, Research Notes in Mathematics, 106, Pitman (Advanced Publishing Program), Boston, MA, 1985.
[9] J. M. do Ó, S. Lorca, J. Sánchez, and P. Ubilla, Positive radial solutions for some quasilinear elliptic systems in exterior domains, Commun. Pure Appl. Anal. 5 (2006), no. 3, 571-581. https://doi.org/10.3934/cpaa.2006.5.571
[10] P. Drábek, A. Kufner, and F. Nicolosi, Quasilinear elliptic equations with degenerations and singularities, De Gruyter Series in Nonlinear Analysis and Applications, 5, Walter de Gruyter \& Co., Berlin, 1997. https://doi.org/10.1515/9783110804775
[11] R. Glowinski and J. Rappaz, Approximation of a nonlinear elliptic problem arising in a non-Newtonian fluid flow model in glaciology, M2AN Math. Model. Numer. Anal. 37 (2003), no. 1, 175-186. https://doi.org/10.1051/m2an:2003012
[12] J. Henderson and H. Wang, Nonlinear eigenvalue problems for quasilinear systems, Comput. Math. Appl. 49 (2005), no. 11-12, 1941-1949. https://doi.org/10.1016/j. camwa.2003.08.015
[13] M. A. Krasnosel'skiǐ, Positive solutions of operator equations, Translated from the Russian by Richard E. Flaherty; edited by Leo F. Boron, P. Noordhoff Ltd. Groningen, 1964.
[14] E. K. Lee and Y.-H. Lee, A multiplicity result for generalized Laplacian systems with multiparameters, Nonlinear Anal. 71 (2009), no. 12, e366-e376. https://doi.org/10. 1016/j.na.2008.11.001
[15] Y.-H. Lee and X. Xu, Global existence structure of parameters for positive solutions of a singular (p_{1}, p_{2})-Laplacian system, Bull. Malays. Math. Sci. Soc. 42 (2019), no. 3, 1143-1159. https://doi.org/10.1007/s40840-017-0539-z
[16] D. O'Regan, Some general existence principles and results for $\left(\phi\left(y^{\prime}\right)\right)^{\prime}=q f\left(t, y, y^{\prime}\right)$, $0<t<1$, SIAM J. Math. Anal. 24 (1993), no. 3, 648-668. https://doi.org/10.1137/ 0524040
[17] D. O'Regan and H. Wang, On the number of positive solutions of elliptic systems, Math. Nachr. 280 (2007), no. 12, 1417-1430. https://doi.org/10.1002/mana. 200513554
[18] J. Sánchez, Multiple positive solutions of singular eigenvalue type problems involving the one-dimensional p-Laplacian, J. Math. Anal. Appl. 292 (2004), no. 2, 401-414. https://doi.org/10.1016/j.jmaa.2003.12.005
[19] I. Sim and Y. H. Lee, A new solution operator of one-dimensional p-Laplacian with a sign-changing weight and its application, Abstr. Appl. Anal. 2012 (2012), Art. ID 243740, 15 pp.
[20] H. Wang, On the number of positive solutions of nonlinear systems, J. Math. Anal. Appl. 281 (2003), no. 1, 287-306. https://doi.org/10.1016/S0022-247X (03) 00100-8
[21] , On the structure of positive radial solutions for quasilinear equations in annular domains, Adv. Differential Equations 8 (2003), no. 1, 111-128.
[22] X. Xu and Y.-H. Lee, Some existence results of positive solutions for ϕ-Laplacian systems, Abstr. Appl. Anal. 2014 (2014), Art. ID 814312, 11 pp. https://doi.org/10. 1155/2014/814312
[23] , On singularly weighted generalized Laplacian systems and their applications, Adv. Nonlinear Anal. 7 (2018), no. 2, 149-165. https://doi.org/10.1515/anona-20160018

Yong-Hoon Lee
Department of Mathematics
Pusan National University
Busan 46241, Korea
Email address: yhlee@pusan.ac.kr
Xianghui Xu
School of Mathematics and Statistics Science
Ludong University
Yantai, Shandong, 264025, P. R. China
Email address: xvxianghui@163.com

[^0]: Received September 28, 2018; Accepted December 10, 2018.
 2010 Mathematics Subject Classification. 34B16, 34B18.
 Key words and phrases. generalized Laplacian system, singular weight, multiplicity, positive solution.

