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MULTIPLICITY RESULTS OF POSITIVE SOLUTIONS FOR

SINGULAR GENERALIZED LAPLACIAN SYSTEMS

Yong-Hoon Lee and Xianghui Xu

Abstract. We study the homogeneous Dirichlet boundary value prob-

lem of generalized Laplacian systems with a singular weight which may
not be in L1. Using the well-known fixed point theorem on cones, we

obtain the multiplicity results of positive solutions under two different
asymptotic behaviors of the nonlinearities at 0 and ∞. Furthermore, a

global result of positive solutions for one special case with respect to a

parameter is also obtained.

1. Introduction

In this paper, we study the following nonlinear differential system

(Pλ)

{
−Φ(u′)

′
= λh(t) · f(u), t ∈ (0, 1),

u(0) = 0 = u(1),

where Φ(u′) = (ϕ(u′1), . . . , ϕ(u′N )) with ϕ : R → R an odd increasing homeo-
morphism, λ > 0 a parameter, h(t) = (h1(t), . . . , hN (t)) with hi : (0, 1) → R+

continuous, hi 6≡ 0 on any subinterval in (0, 1) and f(u) = (f1(u), . . . , fN (u))
with f i : RN+ → R+, here we denote R+ = [0,+∞), RN+ = R+ × · · · × R+︸ ︷︷ ︸

N

and

x ·y = (x1y1, x2y2, . . . , xNyN ) the Hadamard product of x and y in RN . Thus
problem (Pλ) can be rewritten as

−ϕ(u′1)′ = λh1(t)f1(u),
...

−ϕ(u′N )′ = λhN (t)fN (u), t ∈ (0, 1),

ui(0) = 0 = ui(1), i = 1, . . . , N.
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The generalized Laplacian problems like (Pλ) appear in various applications
which describe reaction-diffusion systems, nonlinear elasticity, glaciology, popu-
lation biology, combustion theory, and non-Newtonian fluids (see [8,10,11,16]).
They also have received growing attention in connection with positive radial
solutions of elliptic problems in both annular and exterior domains (see [9, 21]
and the references therein).

In recent years, existence and multiplicity of positive solutions of these prob-
lems have been extensively studied under various assumptions on the weight
functions and nonlinearities (see [1–6], [9], [12], [14, 16–23]). For example,
Wang [20] obtained the criteria of determining the number of positive solutions
of problem (Pλ) with respect to the parameter λ when each hi : [0, 1]→ R+ is
continuous and ϕ satisfies that there exist two increasing homeomorphisms ψ1

and ψ2 of (0,∞) onto (0,∞) such that

ψ1(σ)ϕ(x) ≤ ϕ(σx) ≤ ψ2(σ)ϕ(x) for σ, x > 0.

In this paper, we give assumptions on ϕ, h and f as follows.

(A) There exist an increasing homeomorphism ψ of (0,∞) onto (0,∞) and
a function γ of (0,∞) into (0,∞) such that

ψ(σ) ≤ ϕ(σx)

ϕ(x)
≤ γ(σ) for all σ > 0, x ∈ R/{0}.

(H) hi : (0, 1)→ R+ is a continuous function satisfying∫ 1
2

0

ψ−1

(∫ 1
2

s

hi(τ)dτ

)
ds+

∫ 1

1
2

ψ−1

(∫ s

1
2

hi(τ)dτ

)
ds <∞,

for i = 1, . . . , N.
(F1) f i : RN+ → R+ is continuous for i = 1, . . . , N.

(F2) f i(u) > 0 for u ∈ RN+ with ‖u‖ > 0 , i = 1, . . . , N.

(F3) f i(u1, . . . , uN ) ≤ f i(v1, . . . , vN ), whenever ui = vi, uj ≤ vj , i 6= j.

Note that ϕ covers the case of p-Laplace operator, namely ϕ(x) = ϕp(x) :=
|x|p−2x, x ∈ R, p > 1. Clearly, ϕp satisfies condition (A) with ϕp ≡ ψ ≡ γ.
Specially, conditions (A), (H) on ϕ and hi were introduced first by Xu and Lee
[22] and more general than the ones given by Wang [20]. For convenience, we
introduce a new class of weight functions. For a bijection ι : R→ R, define Hι
a subset of C((0, 1),R+) given by

Hι =

{
g ∈ C((0, 1),R+)

∣∣∣ ∫ 1
2

0

ι−1

(∫ 1
2

s

g(τ)dτ

)
ds+

∫ 1

1
2

ι−1

(∫ s

1
2

g(τ)dτ

)
ds <∞

}
.

By the notation, condition (H) means hi ∈ Hψ.
Now we introduce some notations for the statement of the main theorem.

Denote

f0 :=

N∑
i=1

f i0, f∞ :=

N∑
i=1

f i∞,
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where

f i0 := lim
‖u‖→0

f i(u)

ϕ(‖u‖)
, f i∞ := lim

‖u‖→∞

f i(u)

ϕ(‖u‖)
for u ∈ RN+ and i = 1, . . . , N. For simplicity, we denote ‖u‖ =

∑N
i=1 |ui| for

u ∈ RN+ in this paper.
When N = 1, ϕ = ϕp, Agarwal-Lü-O’Regan [1] and Sánchez [18] proved the

multiplicity of positive solutions of problem (Pλ) for λ belonging to some open
interval if either f0 = f∞ = 0 or f0 = f∞ = ∞. Later, Wang [20] extended
the multiplicity results in [1, 18] to ϕ-Laplacian system with each hi ∈ C[0, 1].
Recently, Xu and Lee [23] derived some explicit intervals for λ such that singular
ϕ-Laplacian system (Pλ) has at least one positive solution if 0 < f0, f∞ <∞.

Our aim is to extend the multiplicity results of Wang [20] to singular ϕ-
Laplacian system (Pλ) for the cases f0 = f∞ = 0 and f0 = f∞ = ∞. Further,
under the monotone-type assumption (F3), we firstly obtain a global result of
positive solutions for problem (Pλ) with respect to λ for the case f0 = f∞ =∞.
More precisely, main results can be stated as follows.

Theorem 1.1. Assume that (A), (H), (F1), and (F2) hold.

(1) If f0 = f∞ = 0, then there exist λ̄ > λ > 0 such that (Pλ) has at least
two positive solutions for λ > λ̄, and no positive solution for λ ∈ (0, λ),
where λ̄, λ are given by (3.2) and (3.9), respectively.

(2) If f0 = f∞ =∞, then there exist λ̄ > λ > 0 such that (Pλ) has at least
two positive solutions for λ ∈ (0, λ), and no positive solution for λ > λ̄,
where λ, λ̄ are given by (3.11) and (3.21), respectively.

Theorem 1.2. Assume that (A), (H), (F1), (F2) and (F3) hold. If f0 =
f∞ = ∞, then there exist λ∗ ≥ λ∗ > 0 such that (Pλ) has at least two positive
solutions for λ ∈ (0, λ∗), one positive solution for λ ∈ [λ∗, λ

∗], and no positive
solution for λ > λ∗, where λ∗, λ∗ are given by (3.28) and (3.29), respectively.

Remark 1.3. If f i0(0) > 0 for some i0 ∈ {1, . . . , N}, then we can get λ∗ = λ∗

in Theorem 1.2. The proof can be easily completed by the similar arguments
in [15].

Remark 1.4. Quasi-monotone condition (F3) is redundant in one dimensional
case so that Theorem 1.2 is valid for scalar ϕ-Laplacian problem without any
monotonicity condition on f .

Remark 1.5. Under the same assumptions in Theorem 1.2, we expect a similar
result for the case f0 = f∞ = 0, but the analysis can not follow in a similar
way.

As a benefit of a constructive technique used in this paper, we note that λ̄, λ
appeared in Theorem 1.1 can be computed explicitly (see examples in Section
4). For the proofs, we employ a newly developed solution operator introduced
by Xu and Lee [22] and then we apply the fixed point theorem on cones for our
main results.
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Our paper is organized as follows. In Section 2, we establish a solution
operator for problem (Pλ) and introduce some preliminary facts. In Section 3,
we prove the main theorems and in Section 4, we give some examples.

2. Preliminaries

Main condition of weight function hi in problem (Pλ) is of Hψ-class which
includes singular functions specially on the boundary, i.e., hi may not be in-
tegrable near the boundary, t = 0 and/or t = 1. In this case, solutions need
not be in C1[0, 1]. So by a solution to problem (Pλ), we understand a function
u ∈ C0([0, 1],RN )∩C1((0, 1),RN ) with Φ(u′) absolutely continuous which sat-
isfies problem (Pλ).

Basic tool for proving our main results is the following well-known fixed
point theorem ([7, 13]).

Theorem 2.1. Let E be a Banach space and let K be a cone in E. Assume
that Ω1 and Ω2 are open subsets of E with 0 ∈ Ω1, Ω1 ⊂ Ω2. Assume that
T : K ∩ (Ω2 \ Ω1)→ K is completely continuous such that either
‖Tu‖ ≤ ‖u‖ for u ∈ K ∩ ∂Ω1 and ‖Tu‖ ≥ ‖u‖ for u ∈ K ∩ ∂Ω2, or
‖Tu‖ ≥ ‖u‖ for u ∈ K ∩ ∂Ω1 and ‖Tu‖ ≤ ‖u‖ for u ∈ K ∩ ∂Ω2.

Then T has a fixed point in K ∩ (Ω2 \ Ω1).

To set up the solution operator for (Pλ), let us define E the Banach space
C0[0, 1]× · · · × C0[0, 1]︸ ︷︷ ︸

N

with norm ‖u‖∞ = ΣNi=1‖ui‖∞ and define a cone K by

taking K = {u ∈ E | ui is concave on [0, 1], i = 1, . . . , N} .
Let us consider a simple scalar problem of the form

−ϕ(w′)′ = g(t), t ∈ (0, 1),(W )

w(0) = w(1) = 0,(D)

where ϕ satisfies (A) and g ∈ Hϕ. Note from condition (A) that Hψ ⊂ Hϕ (see
Remark 2.3). Let w be a solution of (W )+(D). Then integrating both sides of
(W ) on the interval [s, 1

2 ] for s ∈ (0, 1
2 ] and [ 1

2 , s] for s ∈ [ 1
2 , 1), respectively, we

find that (W )+(D) is equivalent to

(2.1)

w
′(s) = ϕ−1

(
a+

∫ 1
2

s
g(τ)dτ

)
, w(0) = 0, s ∈ (0, 1

2 ],

w′(s) = ϕ−1
(
a−

∫ s
1
2
g(τ)dτ

)
, w(1) = 0, s ∈ [ 1

2 , 1),

where a = ϕ(w′( 1
2 )). Showing the fact ϕ−1

(
a+

∫ 1
2

s
g(τ)dτ

)
∈ L1(0, 1

2 ] is not

obvious since g can not be in L1(0, 1
2 ]. One may refer to Xu and Lee [22] for

the proof. Now we may integrate both sides of (2.1) on the interval [0, t] for
t ∈ [0, 1

2 ] and on the interval [t, 1] for t ∈ [ 1
2 , 1], respectively. And we get

w(t) =


∫ t

0
ϕ−1

(
a+

∫ 1
2

s
g(τ)dτ

)
ds, t ∈ [0, 1

2 ],∫ 1

t
ϕ−1

(
−a+

∫ s
1
2
g(τ)dτ

)
ds, t ∈ [ 1

2 , 1].
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To check w( 1
2

−
) = w( 1

2

+
), define for a ∈ R,

(2.2) G(a) =

∫ 1
2

0

ϕ−1

(
a+

∫ 1
2

s

g(τ)dτ

)
ds−

∫ 1

1
2

ϕ−1

(
−a+

∫ s

1
2

g(τ)dτ

)
ds.

Then the function G : R → R is well-defined and has a unique zero a = a(g)

in R (See Xu and Lee [22] for the proof). This implies w( 1
2

−
) = w( 1

2

+
).

Consequently, if ϕ satisfies (A) and g ∈ Hϕ, then the solution w of (W )+(D)
can be represented by

(2.3) w(t) =


∫ t

0
ϕ−1

(
a(g) +

∫ 1
2

s
g(τ)dτ

)
ds, t ∈ [0, 1

2 ],∫ 1

t
ϕ−1

(
−a(g) +

∫ s
1
2
g(τ)dτ

)
ds, t ∈ [ 1

2 , 1],

where a(g) ∈ R uniquely satisfies∫ 1
2

0

ϕ−1

(
a(g) +

∫ 1
2

s

g(τ)dτ

)
ds =

∫ 1

1
2

ϕ−1

(
−a(g) +

∫ s

1
2

g(τ)dτ

)
ds.

Replacing g(t) with λhi(t)f
i(u(t)) in (W )+(D), we may define

Tλ(u) =
(
T 1
λ(u), . . . , TNλ (u)

)
for λ > 0, u ∈ K and for i = 1, . . . , N , given by

T iλ(u)(t) =


∫ t

0
ϕ−1

(
ai(λhif

i(u)) +
∫ 1

2

s
λhi(τ)f i(u(τ))dτ

)
ds, t ∈ [0, 1

2 ],∫ 1

t
ϕ−1

(
−ai(λhif i(u)) +

∫ s
1
2
λhi(τ)f i(u(τ))dτ

)
ds, t ∈ [ 1

2 , 1],

where ai(λhif
i(u)) ∈ R uniquely satisfies∫ 1

2

0

ϕ−1

(
ai(λhif

i(u)) +

∫ 1
2

s

λhi(τ)f i(u(τ))dτ

)
ds

=

∫ 1

1
2

ϕ−1

(
−ai(λhif i(u)) +

∫ s

1
2

λhi(τ)f i(u(τ))dτ

)
ds.

One may show that Tλ : K → K is completely continuous (See Lemma 11 in
Xu and Lee [22] for details). Thus we see that u is a positive solution of (Pλ)
if and only if

u = Tλ(u) on K.

We finally give some remarks and lemma for later use.

Remark 2.2. From condition (A), we get

σx ≤ ϕ−1[γ(σ)ϕ(x)],

and

ϕ−1[σϕ(x)] ≤ ψ−1(σ)x

for σ and x > 0.
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Remark 2.3. Let h ∈ L1
loc((0, 1),R+). Then for any fixed s ∈ (0, 1

2 ), we know∫ 1
2

s
h(τ)dτ < ∞. Applying σ =

∫ 1
2

s
h(τ)dτ and x = ϕ−1(1) in Remark 2.2, we

get

ϕ−1

(∫ 1
2

s

h(τ)dτ

)
≤ ϕ−1(1)ψ−1

(∫ 1
2

s

h(τ)dτ

)
.

This implies Hψ ⊂ Hϕ.

Proposition 2.4. ([20]) Let w ∈ C0[0, 1]∩C1(0, 1) satisfy ϕ(w′)′ ≤ 0 on (0, 1).
Then w is concave on [0, 1] and mint∈[ 14 ,

3
4 ] w(t) ≥ 1

4‖w‖∞, where ‖w‖∞ is the

supremum norm of w.

3. Proofs of main results

In this section, we need to give some lemmas which will play a crucial role
in the proofs of Theorem 1.1 and Theorem 1.2.

Lemma 3.1. Assume that (A), (H), (F1), and (F2) hold. If f0 = f∞ = 0, then
there exists λ̄ > 0 such that (Pλ) has at least two positive solutions for λ > λ̄.

Proof. For any r > 0, define

m̂r = min{f i(x) | x ∈ RN+ ,
r

4
≤ ‖x‖ ≤ r, i = 1, . . . , N}.

We see that m̂r > 0, by (F2). For Kr , {u ∈ K | ‖u‖∞ < r}, let u ∈ ∂Kr,
then by Proposition 2.4, for t ∈ [ 1

4 ,
3
4 ],

r = ‖u‖∞ ≥ ‖u(t)‖ =

N∑
i=1

ui(t) ≥ min
t∈[ 14 ,

3
4 ]

N∑
i=1

ui(t) ≥
1

4
‖u‖∞ =

r

4
,

and

(3.1) f i(u(t)) ≥ m̂r for i = 1, . . . , N.

For simplicity, denote aiλ,u , a
i(λhif

i(u)). Then for u ∈ ∂Kr, we get

2T iλ(u)(
1

2
) =

∫ 1
2

0

ϕ−1

(
aiλ,u +

∫ 1
2

s

λhi(τ)f i(u(τ))dτ

)
ds

+

∫ 1

1
2

ϕ−1

(
−aiλ,u +

∫ s

1
2

λhi(τ)f i(u(τ))dτ

)
ds.

If aiλ,u ≥ 0, then ∫ 1
2

0

ϕ−1

(
aiλ,u +

∫ 1
2

s

λhi(τ)f i(u(τ))dτ

)
ds

≥
∫ 1

2

0

ϕ−1

(∫ 1
2

s

λhi(τ)f i(u(τ))dτ

)
ds,
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and by the definition of aiλ,u,∫ 1

1
2

ϕ−1

(
−aiλ,u +

∫ s

1
2

λhi(τ)f i(u(τ))dτ

)
ds

=

∫ 1
2

0

ϕ−1

(
aiλ,u +

∫ 1
2

s

λhi(τ)f i(u(τ))dτ

)
ds ≥ 0.

Thus

2T iλ(u)(
1

2
) ≥

∫ 1
2

0

ϕ−1

(∫ 1
2

s

λhi(τ)f i(u(τ))dτ

)
ds.

If aiλ,u < 0, then −aiλ,u > 0 and∫ 1

1
2

ϕ−1

(
−aiλ,u +

∫ s

1
2

λhi(τ)f i(u(τ))dτ

)
ds

≥
∫ 1

1
2

ϕ−1

(∫ s

1
2

λhi(τ)f i(u(τ))dτ

)
ds,

and by the same argument, we get

2T iλ(u)(
1

2
) ≥

∫ 1

1
2

ϕ−1

(∫ s

1
2

λhi(τ)f i(u(τ))dτ

)
ds.

Thus, we obtain

2T iλ(u)(
1

2
)

≥ min

{∫ 1
2

0

ϕ−1

(∫ 1
2

s

λhi(τ)f i(u(τ))dτ

)
ds,

∫ 1

1
2

ϕ−1

(∫ s

1
2

λhi(τ)f i(u(τ))dτ

)
ds

}
.

By using (3.1), we get

2‖T iλ(u)‖∞

≥ 2T iλ(u)(
1

2
)

≥ min

{∫ 1
2

0

ϕ−1

(∫ 1
2

s

λhi(τ)f i(u(τ))dτ

)
ds,

∫ 1

1
2

ϕ−1

(∫ s

1
2

λhi(τ)f i(u(τ))dτ

)
ds

}
≥ min

{∫ 1
4

0

ϕ−1

(∫ 1
2

s

λhi(τ)f i(u(τ))dτ

)
ds,

∫ 1

3
4

ϕ−1

(∫ s

1
2

λhi(τ)f i(u(τ))dτ

)
ds

}
≥ min

{∫ 1
4

0

ϕ−1

(∫ 1
2

1
4

λhi(τ)f i(u(τ))dτ

)
ds,

∫ 1

3
4

ϕ−1

(∫ 3
4

1
2

λhi(τ)f i(u(τ))dτ

)
ds

}
≥ min

{∫ 1
4

0

ϕ−1

(
λm̂r

∫ 1
2

1
4

hi(τ)dτ

)
ds,

∫ 1

3
4

ϕ−1

(
λm̂r

∫ 3
4

1
2

hi(τ)dτ

)
ds

}
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=
1

4
ϕ−1

(
λm̂r min

{∫ 1
2

1
4

hi(τ)dτ,

∫ 3
4

1
2

hi(τ)dτ

})
≥ 1

4
ϕ−1 (λm̂rΓ) ,

where Γ , min{min{
∫ 1

2
1
4

hi(τ)dτ,
∫ 3

4
1
2

hi(τ)dτ} | i = 1, . . . , N}. Define

p(r) =
ϕ(8r)

m̂rΓ
,

then p : (0,∞)→ (0,∞) is continuous. Since f0 = f∞ = 0, we get

lim
r→0

p(r) = lim
r→∞

p(r) =∞.

Thus, there exists r∗ ∈ (0,∞) such that

(3.2) p(r∗) = inf{p(r) | r > 0} , λ̄.

Then for any λ > λ̄, there exist r1, r2 > 0 such that 0 < r1 < r∗ < r2 < ∞
with p(r1) = p(r2) = λ. Therefore, if u ∈ ∂Kr1 , then for any λ > λ̄,

2‖T iλ(u)‖∞ ≥ 2T iλ(u)(
1

2
) ≥ 1

4
ϕ−1(

ϕ(8r1)

m̂r1Γ
m̂r1Γ) = 2r1 = 2‖u‖∞,

and thus

(3.3) ‖Tλ(u)‖∞ ≥ ‖T iλ(u)‖∞ ≥ ‖u‖∞ for u ∈ ∂Kr1 , λ > λ̄.

Similarly,

(3.4) ‖Tλ(u)‖∞ ≥ ‖T iλ(u)‖∞ ≥ ‖u‖∞ for u ∈ ∂Kr2 , λ > λ̄.

Let f0 = f∞ = 0, then f i0 = f i∞ = 0, i = 1, . . . , N . For λ > λ̄, we can choose
ε(= ε(λ)) > 0 sufficiently small so that

ψ−1(λε)Υ ≤ 1

N
,

where

Υ , max

{
max{

∫ 1
2

0

ψ−1

(∫ 1
2

s

hi(τ)dτ

)
ds,

∫ 1

1
2

ψ−1

(∫ s

1
2

hi(τ)dτ

)
ds} | i = 1, . . . , N

}
.

Since f i0 = 0, there exists ri3(= ri3(ε)) > 0 such that for x ∈ RN+ with ‖x‖ ≤ ri3,

f i(x) ≤ εϕ(‖x‖) for i = 1, . . . , N.

Take 0 < r3 < min{r1,min{ri3 | i = 1, . . . , N}}. Then for u ∈ ∂Kr3 , we get

(3.5) f i(u(t)) ≤ εϕ(‖u(t)‖) ≤ εϕ(r3) for i = 1, . . . , N.

Since f i∞ = 0, we define a function f̂ i(t) : R+ → R+ by

f̂ i(t) = max{f i(x) | x ∈ RN+ , ‖x‖ ≤ t}.
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By Lemma 2.8 in Wang [20], we have

f̂ i∞ = lim
t→∞

f̂ i(t)

ϕ(t)
= f i∞ = 0.

Since ˆf i∞ = 0, then for ε given above, there exists ri4(= ri4(ε)) > 0 such that
for t ∈ R+ with t ≥ ri4,

f̂ i(t) ≤ εϕ(t) for i = 1, . . . , N.

Take r4 > max
{
r2,max{ri4 | i = 1, . . . , N}

}
. Then for u ∈ ∂Kr4 , we get

(3.6) f i(u(t)) ≤ f̂ i(r4) ≤ εϕ(r4) for i = 1, . . . , N.

Since Tλ(u) ∈ K for u ∈ ∂Krj (j = 3, 4), there exists a unique σi ∈ (0, 1) such

that T iλ(u)(σi) = maxt∈[0,1] T
i
λ(u)(t) and T iλ(u)′(σi) = 0. We first consider the

case σi ∈ (0, 1
2 ].

0 = T iλ(u)′(σi) = ϕ−1

(
aiλ,u +

∫ 1
2

σi

λhi(τ)f i(u(τ))dτ

)
.

Since ϕ is an odd homeomorphism, aiλ,u = −
∫ 1

2

σi
λhi(τ)f i(u(τ))dτ . Applying

(3.5), (3.6) and Remark 2.2 with σ = λε, x = ϕ−1
(
ϕ(rj)

∫ 1
2

s
λhi(τ)dτ

)
and

then σ =
∫ 1

2

s
hi(τ)dτ , x = rj consecutively, we obtain

‖T iλ(u)‖∞ = T iλ(u)(σi)

=

∫ σi

0

ϕ−1

(
aiλ,u +

∫ 1
2

s

λhi(τ)f
i(u(τ))dτ

)
ds

=

∫ σi

0

ϕ−1

(
−
∫ 1

2

σi

λhi(τ)f
i(u(τ))dτ +

∫ 1
2

s

λhi(τ)f
i(u(τ))dτ

)
ds

=

∫ σi

0

ϕ−1

(∫ σi

s

λhi(τ)f
i(u(τ))dτ

)
ds

≤
∫ 1

2

0

ϕ−1

(∫ 1
2

s

λhi(τ)f
i(u(τ))dτ

)
ds

≤
∫ 1

2

0

ϕ−1

(
λεϕ(rj)

∫ 1
2

s

hi(τ)dτ

)
ds

≤ ψ−1(λε)

∫ 1
2

0

ϕ−1

(
ϕ(rj)

∫ 1
2

s

hi(τ)dτ

)
ds

≤ ψ−1 (λε) [

∫ 1
2

0

ψ−1

(∫ 1
2

s

hi(τ)dτ

)
ds] rj .
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Similarly for the case σi ∈ [ 1
2 , 1), we get

‖T iλ(u)‖∞ ≤ ψ−1(λε) [

∫ 1

1
2

ψ−1

(∫ s

1
2

hi(τ)dτ

)
ds] rj .

Combining the above two inequalities and using the choice of ε, we get

‖T iλ(u)‖∞ ≤ ψ−1 (λε) Υrj ≤
rj
N

for i = 1, . . . , N , j = 3, 4, and thus

(3.7) ‖Tλ(u)‖∞ =

N∑
i=1

‖T iλ(u)‖∞ ≤ ‖u‖∞ for u ∈ ∂Krj (j = 3, 4).

Combining (3.3), (3.4) and (3.7), we conclude that problem (Pλ) has at least
two positive solutions u1, u2 with r3 ≤ ‖u1‖∞ ≤ r1 < r2 ≤ ‖u2‖∞ ≤ r4 for
λ > λ̄. �

Lemma 3.2. Assume that (A), (H), and (F1) hold. If f0 = f∞ = 0, then there
exists λ ∈ (0, λ̄) such that (Pλ) has no positive solution for λ ∈ (0, λ).

Proof. Since f0 = f∞ = 0 < ∞, then f i0 < ∞ and f i∞ < ∞, i = 1, . . . , N .
Thus, for any i = 1, . . . , N , there exist positive numbers βi1, βi2, Ri1, Ri2 such
that Ri1 < Ri2, βi1 > f i0, βi2 > f i∞,

f i(x) ≤ βi1ϕ(‖x‖) for x ∈ RN+ , ‖x‖ ≤ Ri1,

and

f i(x) ≤ βi2ϕ(‖x‖) for x ∈ RN+ , ‖x‖ ≥ Ri2.
Let

βi = max{βi1, βi2,max{ f
i(x)

ϕ(‖x‖)
| x ∈ RN+ , Ri1 ≤ ‖x‖ ≤ Ri2}},

and

β = max{max{βi | i = 1, . . . , N}, inf{β | β > 0,
ψ( 1

NΥ )

β
< λ̄}}.

Thus, we have

(3.8) f i(x) ≤ βϕ(‖x‖) for x ∈ RN+ , i = 1, . . . , N.

Assume that v(t) is a positive solution of (Pλ). We prove that if (Pλ) has a
positive solution, then λ ≥ λ, where

(3.9) λ :=
ψ( 1

NΥ )

β
.

Indeed, on the contrary, suppose that (Pλ) has a positive solution v for 0 <
λ < λ. Since v(t) = Tλ(v)(t) for t ∈ [0, 1], applying the same argument
in the proof of Lemma 3.1 with aid of (3.8) and Remark 2.2 with σ = λβ,
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x = ϕ−1
(
ϕ(‖v‖∞)

∫ 1
2

s
hi(τ)dτ

)
and σ =

∫ 1
2

s
hi(τ)dτ , x = ‖v‖∞ consecutively,

we get for 0 < λ < λ,

‖v‖∞ = ‖Tλ(v)‖∞ =

N∑
i=1

‖T iλ(v)‖∞ ≤ N · ψ−1(λβ)Υ‖v‖∞ < ‖v‖∞,

which is a contradiction. �

Lemma 3.3. Assume that (A), (H), (F1), and (F2) hold. If f0 = f∞ = ∞,
then there exists λ > 0 such that (Pλ) has at least two positive solutions for
λ ∈ (0, λ).

Proof. For any r > 0, define

M̂r = max{f i(x) | x ∈ RN+ , ‖x‖ ≤ r, i = 1, . . . , N}.

By (F2), then M̂r > 0. Let u ∈ ∂Kr, then for t ∈ [0, 1],

‖u(t)‖ ≤ ‖u‖∞ = r,

and

(3.10) f i(u(t)) ≤ M̂r for i = 1, . . . , N.

Since Tλ(u) ∈ K for u ∈ ∂Kr, there exists a unique σi ∈ (0, 1) such that
T iλ(u)(σi) = maxt∈[0,1] T

i
λ(u)(t) and T iλ(u)′(σi) = 0. We also consider two

cases σi ∈ (0, 1
2 ] and σi ∈ [ 1

2 , 1) with the similar argument in the proof of
Lemma 3.1 with aid of (3.10), we get

‖T iλ(u)‖∞ ≤ ϕ−1(λM̂r)Υ for i = 1, . . . , N.

Define

q(r) =
ϕ
(
r
NΥ

)
M̂r

,

then q : (0,∞)→ (0,∞) is continuous clearly. Since f0 = f∞ =∞, we get

lim
r→0

q(r) = lim
r→∞

q(r) = 0.

Thus, there exists r∗ ∈ (0,∞) such that

(3.11) q(r∗) = sup{q(r) | r > 0} , λ.

Then for any λ ∈ (0, λ), there exist r1, r2 > 0 such that 0 < r1 < r∗ < r2 <∞
with q(r1) = q(r2) = λ. Therefore, if u ∈ ∂Kr1 , then for λ ∈ (0, λ),

‖T iλ(u)‖∞ ≤ ϕ−1(
ϕ( r1

NΥ )

M̂r1

M̂r1)Υ =
r1

N
for i = 1, . . . , N,

and thus

(3.12) ‖Tλ(u)‖∞ =

N∑
i=1

‖T iλ(u)‖∞ ≤ ‖u‖∞ for u ∈ ∂Kr1 , λ ∈ (0, λ).
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Similarly,

(3.13) ‖Tλ(u)‖∞ =

N∑
i=1

‖T iλ(u)‖∞ ≤ ‖u‖∞ for u ∈ ∂Kr2 , λ ∈ (0, λ).

Let f0 = f∞ =∞, then f i00 = f j0∞ =∞, where

f i00 := max{f i0 | i = 1, . . . , N}, f j0∞ := max{f i∞ | i = 1, . . . , N}

for some i0, j0 ∈ {1, . . . , N}. For λ ∈ (0, λ), we can take M = γ(32)
λΓ > 0. Since

f i00 =∞, there exists rM > 0 such that for x ∈ RN+ with ‖x‖ ≤ rM , we have

f i0(x) ≥Mϕ(‖x‖).
If u ∈ K with ‖u‖∞ ≤ rM , then by Proposition 2.4, for t ∈ [ 1

4 ,
3
4 ],

‖u(t)‖ ≤ ‖u‖∞ ≤ rM ,
and

(3.14) f i0(u(t)) ≥Mϕ(‖u(t)‖) ≥Mϕ(
1

4
‖u‖∞).

Take 0 < r3 < min{r1, rM}. Then for u ∈ ∂Kr3 , we get

(3.15) f i0(u(t)) ≥Mϕ(‖u(t)‖) ≥Mϕ(
1

4
‖u‖∞).

Since f j0∞ =∞, for M given above, there exists RM > 0 such that for x ∈ RN+
with ‖x‖ ≥ RM , we have

f j0(x) ≥Mϕ(‖x‖).
If u ∈ K with ‖u‖∞ ≥ 4RM , then by Proposition 2.4, for t ∈ [ 1

4 ,
3
4 ],

‖u(t)‖ =

N∑
i=1

ui(t) ≥ min
t∈[ 14 ,

3
4 ]

N∑
i=1

ui(t) ≥
1

4
‖u‖∞ ≥ RM ,

and

(3.16) f j0(u(t)) ≥Mϕ(‖u(t)‖) ≥Mϕ(
1

4
‖u‖∞).

Take r4 > max{r2, 4RM}. Then for u ∈ ∂Kr4 , we get

(3.17) f j0(u(t)) ≥Mϕ(‖u(t)‖) ≥Mϕ(
1

4
‖u‖∞).

We also consider two cases aiλ,u ≥ 0 and aiλ,u < 0 (i = i0, j0). Applying the

same argument in the proof of Lemma 3.1 with aids of (3.15), (3.17) and by
the definition of M , we get

2‖T iλ(u)‖∞ ≥ 2T iλ(u)(
1

2
) =

1

4
ϕ−1

(
λMϕ(

1

4
‖u‖∞)Γ

)
≥ 1

4
ϕ−1

(
γ(32)ϕ(

1

4
‖u‖∞)

)
.
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Applying Remark 2.2 with σ = 32 and x = 1
4‖u‖∞, we get

2‖T iλ(u)‖∞ ≥
1

4
× 32× 1

4
‖u‖∞ = 2‖u‖∞.

Thus, for i = i0, j0, we have

(3.18) ‖Tλ(u)‖∞ ≥ ‖T iλ(u)‖∞ ≥ ‖u‖∞ for u ∈ ∂Krj (j = 3, 4).

Combining (3.12), (3.13) and (3.18), we conclude that problem (Pλ) has at
least two positive solutions u1, u2 with r3 ≤ ‖u1‖∞ ≤ r1 < r2 ≤ ‖u2‖∞ ≤ r4

for λ ∈ (0, λ). �

Lemma 3.4. Assume that (A), (H), and (F1) hold. If f0 = f∞ = ∞, then
there exists λ̄ ∈ (λ,∞) (here λ is given in Lemma 3.3) such that (Pλ) has no
positive solution for λ > λ̄.

Proof. Since f0 = f∞ = ∞, we can easily get f i00 > 0 and f j0∞ > 0. Thus,

there exist positive numbers η1, η2, r′1 and r′2 such that r′1 < r′2, 0 < η1 < f i00 ,
0 < η2 < f j0∞,

f i0(x) ≥ η1ϕ(‖x‖) for x ∈ RN+ , ‖x‖ ≤ r′1,
and

f j0(x) ≥ η2ϕ(‖x‖) for x ∈ RN+ , ‖x‖ ≥ r′2.
Let

η3 = min{η1, η2,min{ f
j0(x)

ϕ(‖x‖)
| x ∈ RN+ ,

r′1
4
≤ ‖x‖ ≤ r′2},

sup{η | η > 0,
γ(32)

ηΓ
> λ}} > 0.

Then, we have

(3.19) f i0(x) ≥ η3ϕ(‖x‖) for x ∈ RN+ , ‖x‖ ≤ r′1,

and

(3.20) f j0(x) ≥ η3ϕ(‖x‖) for x ∈ RN+ , ‖x‖ ≥
r′1
4
.

Assume that v is a positive solution of (Pλ), we prove that if (Pλ) has a positive
solution, then λ ≤ λ̄, where

(3.21) λ̄ :=
γ(32)

η3Γ
.

Indeed, on the contrary, suppose that (Pλ) has a positive solution v for λ > λ̄.
If ‖v‖∞ ≤ r′1, then by (3.19) and Proposition 2.4, we get for t ∈ [ 1

4 ,
3
4 ],

(3.22) f i0(v(t)) ≥ η3ϕ(‖v(t)‖) ≥ η3ϕ(
1

4
‖v‖∞).
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On the other hand, if ‖v‖∞ > r′1, then by Proposition 2.4 and (3.20),

‖v(t)‖ =

N∑
i=1

vi(t) ≥ min
t∈[ 14 ,

3
4 ]

N∑
i=1

vi(t) ≥
1

4
‖v‖∞ >

r′1
4
,

and

(3.23) f j0(v(t)) ≥ η3ϕ(‖v(t)‖) ≥ η3ϕ(
1

4
‖v‖∞)

for t ∈ [ 1
4 ,

3
4 ]. Since v(t) = Tλ(v)(t) for t ∈ [0, 1], applying the same argument

in the proof of Lemma 3.1 with aids of (3.22), (3.23) and Remark 2.2 with
σ = 32, x = 1

4‖v‖∞, then for λ > λ̄,

‖v‖∞ = ‖Tλ(v)‖∞ ≥
1

8
ϕ−1

(
λη3ϕ(

1

4
‖v‖∞)Γ

)
>

1

8
ϕ−1

(
γ(32)ϕ(

1

4
‖v‖∞)

)
≥ 1

8
× 32× 1

4
‖v‖∞ = ‖v‖∞,

which is a contradiction. �

Proof of Theorem 1.1. Theorem 1.1(1) follows from Lemma 3.1 and Lemma
3.2. Theorem 1.1(2) follows from Lemma 3.3 and Lemma 3.4. �

Lemma 3.5. Assume that (A), (H), (F1), (F3), and f0 =∞ hold. If (Pλ) has

a positive solution at λ = λ̂, then (Pλ) has at least one positive solution for

λ ∈ (0, λ̂).

Proof. Let û be a positive solution of (Pλ) at λ = λ̂ and let λ ∈ (0, λ̂) be fixed.
Consider the following modified problem

(P ∗λ )

{
−Φ(u′)

′
= λh(t) · f∗(u), t ∈ (0, 1),

u(0) = 0 = u(1),

where f∗ = (f1
∗ , . . . , f

N
∗ ) and each f i∗ : RN+ → R+ is defined by f i∗(u1, . . . , uN ) =

f i(γ1(u1), . . . , γN (uN )) with

γi(ui) =

{
ûi, if ui > ûi,

ui, if 0 ≤ ui ≤ ûi.

First, we show that (P ∗λ ) has at least one positive solution. Define T ∗λ the
same as Tλ replacing f by f∗. Then T ∗λ : K → K is also completely continuous.
By the fact that f∗ is bounded, there exists R > 0 such that ‖T ∗λ (u)‖∞ ≤ R,
for any u ∈ K, i.e.,

(3.24) ‖T ∗λ (u)‖∞ ≤ ‖u‖∞ for u ∈ ∂KR.
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Let f0 =∞, then f i00 =∞. Applying the similar argument in Lemma 3.3 with
0 < r < min{‖û‖∞, R}, we get

(3.25) ‖T ∗λ (u)‖∞ ≥ ‖(T i0λ )∗(u)‖∞ ≥ ‖u‖∞
for u ∈ ∂Kr. Combing (3.24) and (3.25), we conclude that (P ∗λ ) has at least
one solution u with r ≤ ‖u‖∞ ≤ R, i.e., u is a positive solution.

Next, we show that if u is a solution of (P ∗λ ), then 0 ≤ u(t) ≤ û(t) for
t ∈ [0, 1]. If it is true, then (P ∗λ ) and (Pλ) are equivalent and the proof is
complete. Clearly, u(t) ≥ 0 for t ∈ [0, 1]. We also need show that u(t) ≤ û(t)
for t ∈ [0, 1]. If it is not true, then ui(t) 6≤ ûi(t) for some i ∈ {1, . . . , N}. By
the boundary values of ui and ûi, there exist T1, T2 ∈ (0, 1) such that

ui(t)− ûi(t) > 0 on (T1, T2) and ui(T1)− ûi(T1) = ui(T2)− ûi(T2) = 0.

Thus, by (F3), we have for t ∈ (T1, T2),

−ϕ(u′i(t))
′ = λhi(t)f

i
∗(u1, . . . , ui, . . . , uN )

= λhi(t)f
i(γ1(u1), . . . , ûi, . . . , γi(uN ))

≤ λ̂hi(t)f i(û1, . . . , ûi, . . . , ûN )

= −ϕ(ûi
′(t))′,

i.e.,

(3.26) ϕ(u′i(t))
′ ≥ ϕ(ûi

′(t))′.

Since ui − ûi ∈ C0[T1, T2], there exist t0 ∈ (T1, T2) and 0 < δ < T2 − t0 such
that

ui(t0)− ûi(t0) = max
t∈[T1,T2]

{ui(t)− ûi(t)},

and

u′i(t0)− ûi′(t0) = 0, u′i(t)− ûi
′(t) < 0, t ∈ (t0, t0 + δ).

Integrating both sides of (3.26) from t0 to t ∈ (t0, t0 + δ), then we get

ϕ(u′i(t))− ϕ(u′i(t0)) ≥ ϕ(ûi
′(t))− ϕ(ûi

′(t0)).

Since ϕ is increasing, we have u′i(t) ≥ ûi
′(t), t ∈ (t0, t0 + δ), which is a contra-

diction. �

Lemma 3.6. Assume that (A), (H), (F1), and f∞ = ∞ hold. Let I be a
compact interval of (0,∞). Then there exists a constant bI > 0 such that all
possible positive solutions u of (Pλ) at λ ∈ I satisfy ‖u‖∞ < bI .

Proof. Suppose on the contrary that there exists a sequence {un} of positive
solutions of (Pλn

) with {λn} ⊂ I = [α, β] ⊂ (0,∞) and ‖un‖∞ →∞ as n→∞.

Take M = 2γ(32)
αΓ . Let f∞ = ∞, then f j0∞ = ∞. Since f j0∞ = ∞, for M given

above, there exists RM > 0 such that for x ∈ RN+ with ‖x‖ ≥ RM , we have

f j0(x) ≥Mϕ(‖x‖).
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From the assumption, we can get ‖un‖∞ ≥ 4RM for sufficiently large n. Thus,
by Proposition 2.4, we have

‖un(t)‖ =

N∑
i=1

uni (t) ≥ min
t∈[ 14 ,

3
4 ]

N∑
i=1

uni (t) ≥ 1

4
‖un‖∞ ≥ RM ,

and

(3.27) f j0(un(t)) ≥Mϕ(‖un(t)‖) ≥Mϕ(
1

4
‖un‖∞)

for t ∈ [ 1
4 ,

3
4 ] and sufficiently large n. Since un(t) = Tλn

(un)(t) for t ∈ [0, 1], ap-
plying the same argument in Lemma 3.1 with aid of (3.27) and by the definition
of M and Remark 2.2 with σ = 32, x = 1

4‖un‖∞, we get

‖un‖∞ = ‖Tλn
(un)‖∞ ≥

1

8
ϕ−1(λnMϕ(

1

4
‖un‖∞)Γ)

≥ 1

8
ϕ−1(αMϕ(

1

4
‖un‖∞)Γ)

≥ 1

8
ϕ−1(2γ(32)ϕ(

1

4
‖un‖∞))

>
1

8
ϕ−1(γ(32)ϕ(

1

4
‖un‖∞))

≥ 1

8
× 32× 1

4
‖un‖∞ = ‖un‖∞

for λn ∈ I with sufficiently large n. This is a contradiction. �

Proof of Theorem 1.2. Define

(3.28) λ∗ := sup{λ | (Pλ) has at least one positive solution}.

(3.29) λ∗ := sup{λ̃ | (Pλ) has at least two positive solutions for λ ∈ (0, λ̃)}.

By Lemma 3.3 and Lemma 3.4, λ∗ and λ∗ are both well-defined and 0 < λ∗ ≤
λ∗ ≤ λ̄. By the definitions of λ∗ and λ∗, and Lemma 3.5, we get that (Pλ)
has at least two positive solutions for λ ∈ (0, λ∗), one positive solution for
λ ∈ [λ∗, λ

∗), and no positive solution for λ > λ∗.
Finally, it is enough to show that (Pλ) has at least one positive solution at

λ = λ∗. By the definition of λ∗ and Lemma 3.4, we can choose a sequence {λn}
with λ∗

2 ≤ λn < λ∗ ≤ λ̄ such that λn → λ∗ as n → ∞, and then by Lemma

3.6 with I = [λ
∗

2 , λ̄], there exists bI > 0 such that the corresponding positive
solutions un satisfying ‖un‖∞ < bI , i.e., {un} is bounded.

By the fact that Tλn
is completely continuous, we get {Tλn

(un)} is equicon-
tinuous. This implies that {un} is equicontinuous, since un = Tλn

(un). By
the Ascoli-Arzela theorem, {un} is relatively compact. Hence, there exists a
convergent subsequence {un}, denoted again by {un} and u∗ ∈ K such that
un → u∗ as n → ∞. Since un = Tλn

(un), by the Lebesgue Dominated Con-
vergence Theorem, we can get u∗ = Tλ∗(u

∗), i.e., u∗ is a solution of (Pλ∗).
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Moreover, by f0 = ∞ and applying the similar argument in Lemma 3.6, we
see that u∗ 6≡ 0. Therefore mainly due to condition (F2) and the Maximal
Principle, it is not hard to see that u∗ is a positive solution of (Pλ∗). �

4. Applications

In this section, we give some examples applicable to our main results.

Example 4.1. Consider the following scalar ϕ-Laplacian problem

(E1)

{
ϕ(u′)′ + λt−

3
2 f(u) = 0, t ∈ (0, 1),

u(0) = 0 = u(1),

where ϕ(x) = |x|x+ x, x ∈ R, and

f(u) =

{
u3, if 0 ≤ u < 1,

u, if u ≥ 1.

We easily see that ϕ is an odd increasing homeomorphism. Define functions ψ
and γ given as

ψ(σ) =

{
σ2, if 0 < σ ≤ 1,

σ, if σ > 1,

and

γ(σ) =

{
1, if 0 < σ ≤ 1,

σ2, if σ > 1.

Then ψ, γ : (0,∞)→ (0,∞) and ψ is an increasing homeomorphism with

ψ−1(σ) =

{
σ

1
2 , if 0 < σ ≤ 1,

σ, if σ > 1.

We may see that (E1) satisfies assumptions (A), (H), (F1) and (F2) (see Xu
and Lee [22] for details). In addition,

f0 = lim
‖u‖→0

f(u)

ϕ(‖u‖)
= lim
‖u‖→0

u3

u2 + u
= 0,

f∞ = lim
‖u‖→∞

f(u)

ϕ(‖u‖)
= lim
‖u‖→∞

u

u2 + u
= 0.

For any r > 0,

m̂r = max{f(x) | x ∈ R+,
r

4
≤ x ≤ r} = f(r),

where

f(r) =

{
r3, if 0 < r < 1,

r, if r ≥ 1.
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If 0 < r < 1, then

p(r) =
ϕ(8r)

m̂rΓ
=

(8r)2 + 8r

0.49r3
=

64r + 8

0.49r2
,

and

p′(r) =
−31.36r − 7.84

0.2401r3
< 0.

If r ≥ 1, then

p(r) =
ϕ(8r)

m̂rΓ
=

(8r)2 + 8r

0.49r
=

64r + 8

0.49
,

and

p′(r) =
64

0.49
> 0.

Thus, we get

λ̄ = inf{p(r) | r > 0} = p(1) =
64× 1 + 8

0.49

.
= 146.94.

Since f0 = f∞ = 0, there exist β1 = 1 > f0, β2 = 1
10000 > f∞, R1 = 1,

R2 = 10000 such that

f(x) ≤ ϕ(x) for 0 ≤ x ≤ 1,

and

f(x) ≤ 1

10000
ϕ(x) for x ≥ 10000.

Since for x ≥ 1,
f(x)

ϕ(x)
=

x

x2 + x
=

1

x+ 1
,

we get

max{ f(x)

ϕ(x)
| x ∈ R+, 1 ≤ x ≤ 10000} =

1

2
.

From
ψ( 1

NΥ )

β
< λ̄,

we get
( 1

1×1.46 )2

β
< 146.94,

i.e., β > 0.0031 and thus

inf{β | β > 0,
ψ( 1

NΥ )

β
< λ̄} > 0.0031.

Therefore, we obtain

β = max{β1, β2,max{ f(x)

ϕ(x)
| x ∈ R+, 1 ≤ x ≤ 10000},

inf{β | β > 0,
ψ( 1

NΥ )

β
< λ̄}} = 1,
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and

λ =
ψ( 1

NΥ )

β
=

( 1
1×1.46 )2

1
= 0.46.

Consequently, by Theorem 1.1(1), we get the following Conclusion.

Conclusion. Problem (E1) has at least two positive solutions for λ > 146.94,
and no positive solution for λ ∈ (0, 0.46).

Example 4.2. Consider the following ϕ-Laplacian system

(E2)


ϕ(u′)′ + λt−

5
4 f1(u, v) = 0,

ϕ(v′)′ + λt−
6
5 f2(u, v) = 0, t ∈ (0, 1),

u(0) = v(0) = u(1) = v(1) = 0,

where ϕ(x) = x
1
3 , x ∈ R, f1(u, v) = e−u(v+1)

1
2 , f2(u, v) = (u+v+2)

1
2 . Then

ϕ is an odd increasing homeomorphism. By the homogeneity of ϕ, taking
ψ(σ) = γ(σ) ≡ ϕ(σ). We can easily check that (E2) satisfies assumptions (A),
(H), (F1) and (F2) (see Xu and Lee [22] for details) and exactly obtain

Γ = min{min{
∫ 1

2

1
4

hi(τ)dτ,

∫ 3
4

1
2

hi(τ)dτ} | i = 1, 2} = 0.4473.

In fact,∫ 1
2

1
4

h1(τ)dτ =

∫ 1
2

1
4

τ−
5
4 dτ

= −4τ−
1
4

∣∣∣ 12
1
4

= −4[(
1

2
)−

1
4 − (

1

4
)−

1
4 ] = −4(2

1
4 − 4

1
4 )

.
= 0.9000,∫ 3

4

1
2

h1(τ)dτ =

∫ 3
4

1
2

τ−
5
4 dτ

= −4τ−
1
4

∣∣∣ 34
1
2

= −4[(
3

4
)−

1
4 − (

1

2
)−

1
4 ] = −4((

3

4
)−

1
4 − 2

1
4 )

.
= 0.4585,∫ 1

2

1
4

h2(τ)dτ =

∫ 1
2

1
4

τ−
6
5 dτ

= −5τ−
1
5

∣∣∣ 12
1
4

= −5[(
1

2
)−

1
5 − (

1

4
)−

1
5 ] = −5(2

1
5 − 4

1
5 )

.
= 0.8540,∫ 3

4

1
2

h2(τ)dτ =

∫ 3
4

1
2

τ−
6
5 dτ

= −5τ−
1
5

∣∣∣ 34
1
2

= −5[(
3

4
)−

1
5 − (

1

2
)−

1
5 ] = −5((

3

4
)−

1
5 − 2

1
5 )

.
= 0.4473,

Υ = max{max{Hi
0, H

i
1} | i = 1, 2} = 53.8174.
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In fact,

H1
0 =

∫ 1
2

0

ψ−1(

∫ 1
2

s

h1(τ)dτ)ds =

∫ 1
2

0

(

∫ 1
2

s

τ−
5
4 dτ)3ds

.
= 53.8174,

H1
1 =

∫ 1

1
2

ψ−1(

∫ s

1
2

h1(τ)dτ)ds =

∫ 1

1
2

(

∫ s

1
2

τ−
5
4 dτ)3ds

.
= 0.0690,

H2
0 =

∫ 1
2

0

ψ−1(

∫ 1
2

s

h2(τ)dτ)ds =

∫ 1
2

0

(

∫ 1
2

s

τ−
6
5 dτ)3ds

.
= 23.6831,

H2
1 =

∫ 1

1
2

ψ−1(

∫ s

1
2

h2(τ)dτ)ds =

∫ 1

1
2

(

∫ s

1
2

τ−
6
5 dτ)3ds

.
= 0.0648.

In addition,

f1
0 = lim

‖(u,v)‖→0

f1(u, v)

ϕ(‖(u, v)‖)

= lim
‖(u,v)‖→0

e−u(v + 1)
1
2

(u+ v)
1
3

= lim
‖(u,v)‖→0

(v + 1)
1
2

eu(u+ v)
1
3

=∞,

0 ≤ f1
∞ = lim

‖(u,v)‖→∞

f1(u, v)

ϕ(‖(u, v)‖)
= lim
‖(u,v)‖→∞

e−u(v + 1)
1
2

(u+ v)
1
3

≤ lim
‖(u,v)‖→∞

(v + 1)
1
2

(u+ v)
1
3

≤ lim
‖(u,v)‖→∞

(u+ v + 1)
1
2

(u+ v)
1
3

= lim
‖(u,v)‖→∞

(u+ v + 1)
1
3 (u+ v + 1)

1
6

(u+ v)
1
3

= lim
‖(u,v)‖→∞

(1 +
1

u+ v
)

1
3 (u+ v + 1)

1
6 =∞,

f2
0 = lim

‖(u,v)‖→0

f2(u, v)

ϕ(‖(u, v)‖)
= lim
‖(u,v)‖→0

(u+ v + 2)
1
2

(u+ v)
1
3

=∞,

f2
∞ = lim

‖(u,v)‖→∞

f2(u, v)

ϕ(‖(u, v)‖)
= lim
‖(u,v)‖→∞

(u+ v + 2)
1
2

(u+ v)
1
3

≥ lim
‖(u,v)‖→∞

(u+ v)
1
6 =∞.

Thus,

f0 = f1
0 + f2

0 =∞, f∞ = f1
∞ + f2

∞ =∞.

For any r > 0,

M̂r = max{f i(x) | x ∈ R2
+, ‖x‖ ≤ r, i = 1, 2} = (r + 2)

1
2 .



MULTIPLICITY RESULTS OF POSITIVE SOLUTIONS 1329

Then we can easily get

q(r) =
ϕ( r

NΥ )

M̂r

=
ϕ( 1

NΥ )ϕ(r)

M̂r

=
( 1

2×53.8174 )
1
3 r

1
3

(r + 2)
1
2

.
=

0.2102r
1
3

(r + 2)
1
2

,

and

q′(r)


> 0, if 0 < r < 4,

= 0, if r = 4,

< 0, if r > 4.

Thus, we get

λ = sup{q(r) | r > 0} = q(4)
.
= 0.1362.

Since f2
0 = f2

∞ = ∞, there exist η1 = 1 < f2
0 , η2 = 10 < f2

∞, r
′

1 = 1, r
′

2 = 106

such that

f2(x) ≥ ϕ(‖x‖) for x ∈ R2
+, ‖x‖ ≤ 1,

and

f2(x) ≥ 10ϕ(‖x‖) for x ∈ R2
+, ‖x‖ ≥ 106.

Since
f2(x)

ϕ(‖x‖)
=

(‖x‖+ 2)
1
2

‖x‖ 1
3

,

we get

min{ f
2(x)

ϕ(‖x‖)
| x ∈ R2

+,
1

4
≤ ‖x‖ ≤ 106} =

(4 + 2)
1
2

4
1
3

.
= 1.5438.

From
γ(32)

ηΓ
> λ,

we get
3.1748

η · 0.4473
> 0.1362,

i.e., η < 52.1123 and thus

sup{η | η > 0,
γ(32)

ηΓ
> λ} < 52.1123.

Therefore, we obtain

η3 = min{η1, η2,min{ f
2(x)

ϕ(‖x‖)
| x ∈ R2

+,
1

4
≤ ‖x‖ ≤ 106},

sup{η | η > 0,
γ(32)

ηΓ
> λ}} = 1,

and

λ̄ =
γ(32)

η3Γ
=

3.1748

1× 0.4473

.
= 7.0977.

Consequently, by Theorem 1.1(2), we get the following conclusion.



1330 Y.-H. LEE AND X. XU

Conclusion. Problem (E2) has at least two positive solutions for λ∈(0, 0.1362),
and no positive solution for λ > 7.0977.

Clearly, problem (E2) also satisfies assumption (F3). By Theorem 1.2, there
must exist λ∗ ≥ λ∗ > 0 such that problem (E2) has at least two positive
solutions for λ ∈ (0, λ∗), one positive solution for λ ∈ [λ∗, λ

∗], and no positive
solution for λ > λ∗.
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[6] X. Cheng and H. Lü, Multiplicity of positive solutions for a (p1, p2)-Laplacian system

and its applications, Nonlinear Anal. Real World Appl. 13 (2012), no. 5, 2375–2390.
https://doi.org/10.1016/j.nonrwa.2012.02.004

[7] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985. https://

doi.org/10.1007/978-3-662-00547-7

[8] J. I. Dı́az, Nonlinear partial differential equations and free boundaries. Vol. I, Research

Notes in Mathematics, 106, Pitman (Advanced Publishing Program), Boston, MA,

1985.
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