• Title/Summary/Keyword: first-order perturbation

Search Result 136, Processing Time 0.03 seconds

Buckling behavior of composite cylindrical shells with cutout considering geometric imperfection

  • Heidari-Rarani, M.;Kharratzadeh, M.
    • Steel and Composite Structures
    • /
    • v.30 no.4
    • /
    • pp.305-313
    • /
    • 2019
  • Creating different cutout shapes in order to make doors and windows, reduce the structural weight or implement various mechanisms increases the likelihood of buckling in thin-walled structures. In this study, the effect of cutout shape and geometric imperfection (GI) is simultaneously investigated on the critical buckling load and knock-down factor (KDF) of composite cylindrical shells. The GI is modeled using single perturbation load approach (SPLA). First, in order to assess the finite element model, the critical buckling load of a composite shell without cutout obtained by SPLA is compared with the experimental results available in the literature. Then, the effect of different shapes of cutout such as circular, elliptic and square, and perturbation load imperfection (PLI) is investigated on the buckling behavior of cylindrical shells. Results show that the critical buckling load of a shell without cutout decreases by increasing the PLI, whereas increasing the PLI does not have a great impact on the critical buckling load in the presence of cutout imperfection. Increasing the cutout area reduces the effect of the PLI, which results in an increase in the KDF.

Non linear vibrations of stepped beam system under different boundary conditions

  • Ozkaya, E.;Tekin, A.
    • Structural Engineering and Mechanics
    • /
    • v.27 no.3
    • /
    • pp.333-345
    • /
    • 2007
  • In this study, the nonlinear vibrations of stepped beams having different boundary conditions were investigated. The equations of motions were obtained using Hamilton's principle and made non dimensional. The stretching effect induced non-linear terms to the equations. Forcing and damping terms were also included in the equations. The dimensionless equations were solved for six different set of boundary conditions. A perturbation method was applied to the equations of motions. The first terms of the perturbation series lead to the linear problem. Natural frequencies for the linear problem were calculated exactly for different boundary conditions. Second order non-linear terms of the perturbation series behave as corrections to the linear problem. Amplitude and phase modulation equations were obtained. Non-linear free and forced vibrations were investigated in detail. The effects of the position and magnitude of the step, as well as effects of different boundary conditions on the vibrations, were determined.

Coprime Factor Reduction of Parameter Varying Controller

  • Saragih, Roberd;Widowati, Widowati
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.6
    • /
    • pp.836-844
    • /
    • 2008
  • This paper presents an approach to order reduction of linear parameter varying controller for polytopic model. Feasible solutions which satisfy relevant linear matrix inequalities for constructing full-order parameter varying controller evaluated at each polytopic vertices are first found. Next, sufficient conditions are derived for the existence of a right coprime factorization of parameter varying controller. Furthermore, a singular perturbation approximation for time invariant systems is generalized to reduce full-order parameter varying controller via parameter varying right coprime factorization. This generalization is based on solutions of the parameter varying Lyapunov inequalities. The closed loop performance caused by using the reduced order controller is developed. To examine the performance of the reduced-order parameter varying controller, the proposed method is applied to reduce vibration of flexible structures having the transverse-torsional coupled vibration modes.

A new adaptive mesh refinement strategy based on a probabilistic error estimation

  • Ziaei, H.;Moslemi, H.
    • Structural Engineering and Mechanics
    • /
    • v.74 no.4
    • /
    • pp.547-557
    • /
    • 2020
  • In this paper, an automatic adaptive mesh refinement procedure is presented for two-dimensional problems on the basis of a new probabilistic error estimator. First-order perturbation theory is employed to determine the lower and upper bounds of the structural displacements and stresses considering uncertainties in geometric sizes, material properties and loading conditions. A new probabilistic error estimator is proposed to reduce the mesh dependency of the responses dispersion. The suggested error estimator neglects the refinement at the critical points with stress concentration. Therefore, the proposed strategy is combined with the classic adaptive mesh refinement to achieve an optimal mesh refined properly in regions with either high gradients or high dispersion of the responses. Several numerical examples are illustrated to demonstrate the efficiency, accuracy and robustness of the proposed computational algorithm and the results are compared with the classic adaptive mesh refinement strategy described in the literature.

Nonlinear Wave Transformation of a Submerged Coastal Structure (잠수구조물에 의한 비선형파랑변형에 관한 연구)

  • Kim, W. K.;Kang, I. S.;Kwak, K. S.;Kim, D. S.
    • Journal of Korean Port Research
    • /
    • v.8 no.1
    • /
    • pp.41-47
    • /
    • 1994
  • The present paper discusses the nonlinear wave deformation due to a submerged coastal structure. Theory is based on the frequency-domain method using the third order perturbation and boundary integral method. Theoretical development to the second order perturbation and boundary integral method. Theoretical development to the second order Stokes wave for a bottom-seated submerged breakwater to the sea floor is newly expanded to the third order for a submerged coastal structure shown in Figure 1. Validity is demonstrated by comparing numerical results with the experimental ones of a rectangular air chamber structure, which has the same dimensions as that of this study. Nonlinear waves become larger and larger with wave propagation above the crown of the structure, and are transmitted to the onshore side of the structure. These characteristics are shown greatly as the increment of Ursell number on the structure. The total water profile depends largely on the phase lag among the first, second and third order component waves.

  • PDF

A PETROV-GALERKIN METHOD FOR A SINGULARLY PERTURBED ORDINARY DIFFERENTIAL EQUATION WITH NON-SMOOTH DATA

  • Zheng T.;Liu F.
    • Journal of applied mathematics & informatics
    • /
    • v.22 no.1_2
    • /
    • pp.317-329
    • /
    • 2006
  • In this paper, a singularly perturbed ordinary differential equation with non-smooth data is considered. The numerical method is generated by means of a Petrov-Galerkin finite element method with the piecewise-exponential test function and the piecewise-linear trial function. At the discontinuous point of the coefficient, a special technique is used. The method is shown to be first-order accurate and singular perturbation parameter uniform convergence. Finally, numerical results are presented, which are in agreement with theoretical results.

SAMPLING THEOREMS ASSOCIATED WITH DIFFERENTIAL OPERATORS WITH FINITE RANK PERTURBATIONS

  • Annaby, Mahmoud H.;El-Haddad, Omar H.;Hassan, Hassan A.
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.5
    • /
    • pp.969-990
    • /
    • 2016
  • We derive a sampling theorem associated with first order self-adjoint eigenvalue problem with a finite rank perturbation. The class of the sampled integral transforms is of finite Fourier type where the kernel has an additional perturbation.

Theoretical Studies of the Low-Lying Electronic States of Diazirine and 3,$3^{\prime} $-Dimenthyldiazirine

  • 한민수;조한국;정병서
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.11
    • /
    • pp.1281-1287
    • /
    • 1999
  • The low-lying electronic states of diazirine and 3,3'-dimethyldiazirine have been studied by high level ab initio quantum chemical methods. The equilibrium geometries of the ground state and the first excited singlet and triplet states have been optimized using the Hartree-Fock (HF) and complete active space SCF (CASSCF) methods, as well as using the Møller-Plesset second order perturbation (MP2) theory and the single configuration interaction (CIS) theory. It was found that the first excited singlet state is of 1 B1 symmetry resulting from the n- π* transition, while the first excited triplet state is of 3 B2 symmetry resulting from the π- π* transition. The harmonic vibrational frequencies have been calculated at the optimized geometry of each electronic state, and the scaled frequencies have been compared with the experimental frequencies available. The adiabatic and vertical transition energies from the ground electronic state to the low-lying electronic states have been estimated by means of multireference methods based on the CASSCF wavefunctions, i.e., the multiconfigurational quasidegenerate second order perturbation (MCQDPT2) theory and the CASSCF second-order configuration interaction (CASSCF-SOCI) theory. The vertical transition energies have also been calculated by the CIS method for comparison. The computed transition energies, particularly by MCQDPT2, agree well with the experimental observations, and the electronic structures of the molecules have been discussed, particularly in light of the controversy over the existence of the so-called second electronic state.

Asymmetric Robustness Bounds of Eigenvalue Distribution for Uncertain Linear Systems (불확실한 선형시스템 고유값 배치의 비대칭 강인한계)

  • 이재천
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.7
    • /
    • pp.794-799
    • /
    • 1999
  • This study deals with robustness bounds estimation for uncertain linear systems with structured perturbations where the eigenvalues of the perturbed systems are guaranteed to stay in a prescribed region. Based upon the Lyapunov approach, new theorems to estimate allowable perturbation parameter bounds are derived. The theorems are referred to as the zero-order or first-order asymmetric robustness measure depending on the order of the P matrix in the sense of Taylor series expansion of perturbed Lyapunov equation. It is proven that Gao's theorem for the estimation of stability robustness bounds is a special case of proposed zero-order asymmetric robustness measure for eigenvalue assignment. Robustness bounds of perturbed parameters measured by the proposed techniques are asymmetric around the origin and less conservative than those of conventional methods. Numerical examples are given to illustrate proposed methods.

  • PDF

THE METHOD OF ASYMPTOTIC INNER BOUNDARY CONDITION FOR SINGULAR PERTURBATION PROBLEMS

  • Andargie, Awoke;Reddy, Y.N.
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.3_4
    • /
    • pp.937-948
    • /
    • 2011
  • The method of Asymptotic Inner Boundary Condition for Singularly Perturbed Two-Point Boundary value Problems is presented. By using a terminal point, the original second order problem is divided in to two problems namely inner region and outer region problems. The original problem is replaced by an asymptotically equivalent first order problem and using the stretching transformation, the asymptotic inner condition in implicit form at the terminal point is determined from the reduced equation of the original second order problem. The modified inner region problem, using the transformation with implicit boundary conditions is solved and produces a condition for the outer region problem. We used Chawla's fourth order method to solve both the inner and outer region problems. The proposed method is iterative on the terminal point. Some numerical examples are solved to demonstrate the applicability of the method.