Browse > Article
http://dx.doi.org/10.12989/scs.2019.30.4.305

Buckling behavior of composite cylindrical shells with cutout considering geometric imperfection  

Heidari-Rarani, M. (Department of Mechanical Engineering, Faculty of Engineering, University of Isfahan)
Kharratzadeh, M. (Department of Mechanical Engineering, Faculty of Engineering, University of Isfahan)
Publication Information
Steel and Composite Structures / v.30, no.4, 2019 , pp. 305-313 More about this Journal
Abstract
Creating different cutout shapes in order to make doors and windows, reduce the structural weight or implement various mechanisms increases the likelihood of buckling in thin-walled structures. In this study, the effect of cutout shape and geometric imperfection (GI) is simultaneously investigated on the critical buckling load and knock-down factor (KDF) of composite cylindrical shells. The GI is modeled using single perturbation load approach (SPLA). First, in order to assess the finite element model, the critical buckling load of a composite shell without cutout obtained by SPLA is compared with the experimental results available in the literature. Then, the effect of different shapes of cutout such as circular, elliptic and square, and perturbation load imperfection (PLI) is investigated on the buckling behavior of cylindrical shells. Results show that the critical buckling load of a shell without cutout decreases by increasing the PLI, whereas increasing the PLI does not have a great impact on the critical buckling load in the presence of cutout imperfection. Increasing the cutout area reduces the effect of the PLI, which results in an increase in the KDF.
Keywords
composite shell; buckling; cutout; single perturbation load approach; geometry imperfection; knock-down factor;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Aktas, M. and Balcioglu, H. (2014), "Buckling behavior of pultruded composite beams with circular cutouts", Steel Compos. Struct., Int. J., 17(4), 359-370.   DOI
2 Arbelo, M.A., Degenhardt, R., Castro, S.G. and Zimmermann, R. (2014), "Numerical characterization of imperfection sensitive composite structures", Compos. Struct., 108, 295-303.   DOI
3 Arbocz, J. and Starnes, Jr., J. (2002), "Future directions and challenges in shell stability analysis", Thin-Wall. Struct., 40(9), 729-754.   DOI
4 Moniri Bidgoli, A.M. and Heidari-Rarani, M. (2016), "Axial buckling response of fiber metal laminate circular cylindrical shells", Struct. Eng. Mech., Int. J., 57(1), 45-63.   DOI
5 Bisagni, C. (2000), "Numerical analysis and experimental correlation of composite shell buckling and post-buckling", Compos. Part B: Eng., 31(8), 655-667.   DOI
6 Castro, S.G., Zimmermann, R., Arbelo, M.A. and Degenhardt, R. (2013), "Exploring the constancy of the global buckling load after a critical geometric imperfection level in thin-walled cylindrical shells for less conservative knock-down factors", Thin-Wall. Struct., 72, 76-87.   DOI
7 Castro, S.G., Zimmermann, R., Arbelo, M.A., Khakimova, R., Hilburger, M.W. and Degenhardt, R. (2014), "Geometric imperfections and lower-bound methods used to calculate knock-down factors for axially compressed composite cylindrical shells", Thin-Wall. Struct., 74, 118-132.   DOI
8 Degenhardt, R. (2011), "New robust design guideline for Imperfection sensitive composite launcher Structures", The International Conference of the European Aerospace Societies.
9 Eglitis, E., Kalnins, K. and Ozolins, O. (2009), "Experimental and numerical study on buckling of axially compressed composite cylinders", Construct. Sci., 10.
10 Esslinger, M. (1969), Hochgeschwindigkeitsaufnahmen vom Beulvorgang dunnwandiger, axialbelasteter Zylinder, Deutsche Forschungs-und Versuchsanst. fur Luft-und Raumfahrt
11 Huhne, C., Rolfes, R. and Tessmer, J. (2005), "A new approach for robust design of composite cylindrical shells under axial compression", Spacecraft Struct. Mater. Mech. Testing.
12 Khakimova, R., Castro, S.G., Wilckens, D., Rohwer, K. and Degenhardt, R. (2017), "Buckling of axially compressed CFRP cylinders with and without additional lateral load: Experimental and numerical investigation", Thin-Wall. Struct., 119, 178-189.   DOI
13 Huhne, C., Rolfes, R., Breitbach, E. and Tessmer, J. (2008), "Robust design of composite cylindrical shells under axial compression-simulation and validation", Thin-Wall. Struct., 46(7), 947-962.   DOI
14 Ismail, M.S., Baharudin, B., Talib, Z. and Yahya, S.A. (2014), "Improvement of cylinder buckling knockdown factor through imperfection sensitivity", Adv. Mater. Res.
15 Ismail, M., Purbolaksono, J., Andriyana, A., Tan, C., Muhammad, N. and Liew, H. (2015), "The use of initial imperfection approach in design process and buckling failure evaluation of axially compressed composite cylindrical shells", Eng. Fail. Anal., 51, 20-28.   DOI
16 Khayat, M., Poorveis, D. and Moradi, Sh. (2016), "Buckling analysis of laminated composite cylindrical shell subjected to lateral displacement-dependent pressure using semi-analytical finite strip method", Steel Compos. Struct., Int. J., 22(2), 301-321.   DOI
17 Kriegesmann, B., Jansen, E.L. and Rolfes, R. (2016), "Design of cylindrical shells using the single perturbation load approach-potentials and application limits", Thin-Wall. Struct., 108, 369-380.   DOI
18 Ma, Y., Cheng, X., Wang, Z., Guo, X., Zhang, J. and Xu, Y. (2018), "Buckling and post-buckling behaviors of 1/3 composite cylindrical shell with an opening", Steel Compos. Struct., Int. J., 27(5), 555-566.
19 Orifici, A.C. and Bisagni, C. (2013), "Perturbation-based imperfection analysis for composite cylindrical shells buckling in compression", Compos. Struct., 106, 520-528.   DOI
20 Peterson, J., Seide, P. and Weingarten, V. (1968), "Buckling of thin-walled circular cylinders". NASA SP-8007, NASA Space Vehicle Design Criteria - Structures.
21 Priyadarsini, R., Kalyanaraman, V. and Srinivasan, S. (2012), "Numerical and experimental study of buckling of advanced fiber composite cylinders under axial compression", Int. J. Struct. Stabil. Dyn., 12(4), 1250028.
22 Sosa, E.M., Godoy, L.A. and Croll, J.G. (2006), "Computation of lower-bound elastic buckling loads using general-purpose finite element codes", Comput. Struct., 84(29), 1934-1945.   DOI
23 Taheri-Behrooz, F. and Omidi, M. (2018), "Buckling of axially compressed composite cylinders with geometric imperfections", Steel Compos. Struct., Int. J., 29(4), 557-567.
24 Taheri-Behrooz, F., Omidi, M. and Shokrieh, M. (2017), "Experimental and numerical investigation of buckling behavior of composite cylinders with cutout", Thin-Wall. Struct., 116, 136-144.   DOI
25 Wagner, H., Huhne, C. and Niemann, S. (2017a), "Robust knockdown factors for the design of axially loaded cylindrical and conical composite shells-Development and Validation", Compos. Struct., 173, 281-303.   DOI
26 Wagner, H., Huhne, C., Niemann, S. and Khakimova, R. (2017b), "Robust design criterion for axially loaded cylindrical shells-Simulation and Validation", Thin-Wall. Struct., 115, 154-162.   DOI
27 Wang, B., Du, K., Hao, P., Tian, K., Chao, Y.J., Jiang L., Xu, S. and Zhang, X. (2019a), "Experimental validation of cylindrical shells under axial compression for improved knockdown factors", Int. J. Solids Struct., 160.
28 Yamada, S., Yano, K. and Croll, J. (2001), "Nonlinear buckling behaviour of fibre reinforced polymeric cylinders under compression", Proceedings of IASS-2001, Hosei University, Nagoya, Japan.
29 Wang, B., Ma, X., Hao, P., Sun, Y., Tian, K., Li, G., Zhang, K., Jiang, L. and Guo, J. (2019b), "Improved knockdown factors for composite cylindrical shells with delamination and geometric imperfections", Compos. Part B: Eng., 163, 314-323.   DOI
30 Wullschleger, L. and Meyer-Piening, H.-R. (2002), "Buckling of geometrically imperfect cylindrical shells-definition of a buckling load", Int. J. Non-Linear Mech., 37(4), 645-657.   DOI