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SAMPLING THEOREMS ASSOCIATED WITH

DIFFERENTIAL OPERATORS

WITH FINITE RANK PERTURBATIONS

Mahmoud H. Annaby, Omar H. El-Haddad, and Hassan A. Hassan

Abstract. We derive a sampling theorem associated with first order self-
adjoint eigenvalue problem with a finite rank perturbation. The class of
the sampled integral transforms is of finite Fourier type where the kernel
has an additional perturbation.

1. Introduction

In the papers of Campbell [11], Haddad et al. [18] and Everitt-Poulkou [16]
the classical sampling theorem of Whittaker-Kotel’nikov-Shannon (WKS) has
been connected to first order self-adjoint eigenvalue problems. The WKS sam-
pling theorem gives us the ability to reconstruct elements of the Paley-Wiener
space from their values at the integers. This space is called the space of band-
limited functions in physical and engineering terminology. The Paley-Wiener
spaceB2

π is defined to be the set of all L2(R)-functions whose Fourier transforms
vanish outside [−π, π]. Thus f ∈ B2

π if there exists a unique L2(−π, π)-function
g(·) for which

(1.1) f(t) =

∫ π

−π

g(x) e−ixt dx.

Equivalently, [7, 22], B2
π coincides with the class of all L2(R)-entire functions

with exponential type π. Also it is known that B2
π ⊂ L2(R) is a reproducing

kernel Hilbert space with the reproducing kernel

(1.2) K(t, s) =
sinπ(t− s)

π(t− s)
,

cf. e.g. [19]. The classical sampling theorem of Whittaker-Kotel’nikov-Shannon
(WKS), states that if f ∈ B2

π, then f can be recovered from its values at the
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integers via the sampling series

(1.3) f(t) =

∞
∑

k=−∞
f(k)

sinπ(t− k)

π(t− k)
, t ∈ C.

The convergence of series (1.3) is uniform on R and on compact subsets of C
and it is absolute on C. Moreover series (1.3) converges in the L2(R)-norm.
See [9, 20, 23, 26]. The proof of (1.3) could be derived using several ways, see
e.g. [19, 27].

In the works of Campbell [11], Haddad et al. [18] and Everitt-Poulkou [16]
mentioned above the authors indicated that WKS sampling theorem could be
established in connection with the first order eigenvalue problem

(1.4) ℓ(y) := iy′ = ty, y(π) = y(−π) − π ≤ x ≤ π, t ∈ C.

The connection comes from the fact that the kernel exp(−ixt) of (1.1) is a
solution of the differential equation of (1.4) for all t ∈ C and the sampling points
in (1.3), i.e., the integers, are nothing but the eigenvalues of the problem (1.4).
Another fact that plays a major role in the derivation of the WKS sampling
theorem associated with (1.4) is that the set of eigenfunctions of (1.4), namely
{e−ikx}∞k=−∞ is generated by a single function, namely the solution (kernel).
In another direction, still related to (1.4), Haddad et al. [18] derived WKS
sampling theorem using Green’s function of (1.4).

In this article we study the sampling theorem associated with (1.4) when
the differential operator contains a finite rank perturbation. As we see below
several changes will occur in the spectral properties of the perturbed eigenvalue
problem. These changes will affect the associated sampling results. The first
change will be in the class of transforms where the results hold. It will not
be in general a Paley-Wiener space, but a perturbed one where the kernel
exp(−ixt) will be replaced by exp(−ixt) + κ(x, t), see the examples below for
concrete examples. On the other hand, unlike (1.4), the eigenvalues will not
be always simple. Therefore we will derive two sampling results, one when
all eigenfunctions are generated by one single function and the other by using
Green’s function, employing a technique of [1, 2, 6]. In the next two sections
we study a spectral analysis of the perturbed problem. We use and extend the
techniques of Catchpole [12] and Stakgold [25] as well as the theory of finite
rank operators as in [17]. Then we derive two sampling theorems as well as
illustrative examples with comparisons in the last two sections.

It is worthwhile to mention that the authors have treated the rank-one per-
turbation situation in [5]. However, because of one dimensionality, there was
no need for a deep treatment based on the theory of finite rank operators as
we did here. See also [24]. A treatment of the discrete situation could be also
found in [4].
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2. Fundamental solutions and eigenvalues

Let n ∈ Z+ be fixed. Consider the boundary-value problem

(2.1) ℓr(y) := iy′ +
n
∑

k=1

rk(x)

∫ π

−π

rk(τ) y(τ) dτ = ty, −π ≤ x ≤ π, t ∈ C,

(2.2) V (y) := y(π)− y(−π) = 0.

Here rk(·), k = 1, . . . , n, are n linearly independent L2(−π, π)-real-valued func-
tions. Let us denote this problem by Πn. The unperturbed problem (1.4) will
be denoted by Π. We can see that Problem Πn is self adjoint with real eigen-
values only. Now we try to find the general solution of equation (2.1). We use
the technique established by Catchpole in [12], see also [25]. Write (2.1) as the
linear equation

(2.3) y′ + ity = i
n
∑

k=1

ρk rk(x), ρk := 〈y, rk〉 =
∫ π

−π

y(τ) rk(τ) dτ,

which has the solution

(2.4) y = e−itx

(

i
n
∑

k=1

ρk

∫ x

−π

rk(τ) e
itτ dτ + c

)

= c e−itx +
n
∑

k=1

ρk Pk(x, t),

where c is an arbitrary constant, and

(2.5) Pk(x, t) := i e−itx

∫ x

−π

rk(τ) e
itτ dτ, k = 1, . . . , n.

Note that Pk(·, t) is the unique solution of the inhomogeneous initial value
problem

(2.6) iy′ + rk(x) = ty, y(−π) = 0.

Therefore, a solution φ of equation (2.1) satisfies the integral equation

(2.7) φ = c e−itx +

n
∑

k=1

〈φ, rk〉Pk, 〈u, v〉 :=
∫ π

−π

u(τ)v(τ) dτ.

Applying the results of [17, p. 66] concerning the inversion formula for finite
rank operators we get the following lemma.

Lemma 2.1. If for some t

(2.8) C(t) := det(aij)1≤i, j≤n 6= 0, aij := δij − 〈Pj , ri〉 ,
then the general solution of (2.1) has the form

(2.9) φc(x, t) := c ϕ(x, t) − c

C(t)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 a12 . . . a1n 〈ϕ, r1〉
a21 a22 . . . a2n 〈ϕ, r2〉
...

...
...

...

an1 an2 . . . ann 〈ϕ, rn〉
P1 P2 . . . Pn 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,
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where ϕ(x, t) := e−itx and c is an arbitrary constant.

We will denote the solution by φ(x, t) when c = 1.
This solution can be directly obtained by multiplying (2.7) by rj(·) and

integrating over [−π, π], and then we get the nonhomogeneous system

(2.10)











a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

an1 an2 . . . ann





















〈φc, r1〉
〈φc, r2〉

...
〈φc, rn〉











=











〈ϕ, r1〉
〈ϕ, r2〉

...
〈ϕ, rn〉











,

which, under the conditions of the lemma, can be solved by Cramer’s rule
leading to (2.9). Equation (2.10) is also useful for our investigations.

It is concluded from the previous lemma that, when C(t) does not vanish, the
linear space of solutions of equation (2.1) is a one dimensional space as is the
case of (1.4). Also a solution is uniquely determined by one initial condition.
So in this case all eigenvalues when C(t) 6= 0 are simple. The situation is
different when C(t) = 0. We will seek the solution when C(t) = 0. First we
have the following lemma.

Lemma 2.2. Assume that C(t) = 0. Then

(2.11) R(x, t) =

n
∑

k=1

αk Pk(x, t),

is a non-trivial solution of (2.1) if (α1, . . . , αn) is a non-trivial solution of the

homogenous system

(2.12)











a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

an1 an2 . . . ann





















α1

α2

...

αn











= 0.

Proof. Obviously P1, . . . , Pn are linearly independent on [−π, π]. We assign
from (2.11) in (2.1), using that Pk(·, t) is the solution of (2.6), to obtain for
arbitrary α1, . . . , αn,

(2.13)
n
∑

k=1





n
∑

j=1

αj 〈Pj , rk〉 − αk



 rk(x) = 0 a.e.

The linearly independence of rk(·), k = 1, . . . , n and equation (2.13) lead to
the system

(2.14)
n
∑

j=1

αj 〈Pj , rk〉 − αk = 0, k = 1, . . . , n,

which has a non-trivial solution for α1, . . . , αn, since det(aij) = C(t) = 0. �



PERTURBED SAMPLING THEOREMS 973

As we notice in system (2.10) when C(t) = 0, the system cannot be guar-
anteed to have a solution unless 〈ϕ, rk〉 = 0, k = 1, . . . , n. So we assume
throughout the rest of this article that this condition occurs when C(t) = 0.
Therefore ϕ is a solution of (2.1) and we have the following lemma.

Lemma 2.3. Let ν :=the rank of the matrix (aij)1≤i,j≤n. Therefore any

solution of (2.1) when C(t) = 0 has the form

(2.15) ψc(x, t) := c ϕ(x, t) +

n−ν
∑

k=1

γkRk(x, t),

where {Rk(·, t)}n−ν
k=1 are all linearly independent solutions of (2.1) of the form

(2.11) and {γk}n−ν
k=1 are arbitrary constants.

As we saw if C(t) = 0, equation (2.1) may have n+ 1 linearly independent
solutions. Also the same initial condition determines infinitely many solutions.

Now we investigate the eigenvalues of the problem Πn. From now on φ(·, t)
denotes the function (2.9) with c = 1. If C(t) 6= 0, then t is an eigenvalue if
and only if

(2.16) ∆(t) := V (φ(·, t)) = 0.

In this case if t∗ satisfies (2.16), then t∗ is a simple eigenvalue with the eigen-
function φ(x, t∗), i.e., φ(·, t) will generate all eigenfunctions corresponding to
zeros of ∆(t). Now we consider the real zeros of C(t).

Lemma 2.4. Let C(t) = 0 for some real t. Then t is an eigenvalue of Πn with

multiplicity n− ν if it is not an eigenvalue of Π. Otherwise it is of multiplicity

n− ν + 1.

Proof. If C(t) = 0 for some real t, we show that Pk(·, t) satisfies (2.2). Since

〈ϕk, r〉 =
∫ π

−π

e−itτrk(τ) dτ = 0,

then taking the complex conjugate and using that rk and t are real, we get
∫ π

−π

eitτ rk(τ) dτ = 0, k = 1, . . . , n.

Hence, Pk(π, t) = 0 and since Pk(−π, t) = 0, then V (Rk) = 0, where

{Rk(x, t)}n−ν
k=1

are defined in Lemma 2.3. Thus Rk(x, t) satisfies the boundary condition (2.2)
in addition to equation (2.1). Hence Rk(x, t) is an eigenfunction of Πn and the
first part follows. The eigenvalue t will have another eigenfunction, namely

ψ(x, t) = c ϕ(x, t) +

n−ν
∑

k=1

γkRk(x, t),
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if

(2.17) 0 = V (ψ) = c V (ϕ) +

n−ν
∑

k=1

γkV (Rk) = c V (ϕ).

The above equation will have a non-trivial solution if and only if t is an eigen-
value of Π which cannot have more than one linearly independent solution,
since Π has only simple eigenvalues. This completes the proof. �

As is seen the multiple eigenvalues of Πn are only the real zeros of C(t).
Fortunately, as we will see in the next lemma, the number of eigenvalues with
multiplicity more than one is finite.

Lemma 2.5. The function C(t) has at most a finite number of real zeros.

Proof. From Lemma 2.4 above, any real zero of C(t) is an eigenvalue. We
assume that t is real. The function C(t) cannot have zeros with finite limit
points and therefore the only possible limit points for the zeros of C(t) are
±∞. By definition of Pk(·, t), we have

〈Pk, rj〉 = i

∫ π

−π

e−itx rj(x)

∫ x

−π

rk(τ) e
itτ dτ dx.

Since for x ∈ [−π, π], e−itx rj(x), is bounded on R as a function of t, then by
Riemann-Lebesgue’s Lemma, [8, p. 167], we obtain for x ∈ [−π, π],

(2.18) lim
t→±∞

f(x, t) := lim
t→±∞

e−itx rj(x)

∫ x

−π

rk(τ) e
itτ dτ = 0.

Therefore, for any sequence tk of real numbers with limk→∞ tk = ±∞, we
obtain

lim
k→∞

f(x, tk) = 0, x ∈ [−π, π].

Also

|f(x, t)| ≤ |rj(x)|
∫ x

−π

|rk(τ)| dτ := g(x).

The function g(x) ∈ L1(−π, π). Hence, from Lebesgue’s dominated conver-
gence theorem, we have

lim
k→∞

∫ π

−π

f(x, tk) dx = 0

for all real sequences tk with tk → ±∞. Thus

lim
t→±∞

∫ π

−π

f(x, t) dx = 0.

Then C(t), cannot have large zeros since limt→±∞ C(t) = 1. Therefore, C(t)
has only a finite number of real zeros. �

Finally we discuss the multiplicity of the eigenvalues in the following lemma.
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Lemma 2.6. The zeros of ∆(t) are simple zeros. Let t∗ be a real zero of C(t)
with algebraic multiplicity s and µ :=the multiplicity of the eigenvalue t∗. If t∗

is not an eigenvalue of Π, then µ ≤ s, otherwise, µ ≤ s+ 1.

Proof. For differentiable functions y, z we can derive the following Lagrange’s
identity

(2.19) 〈ℓry, z〉 = i
[

y(x)z(x)
]π

−π
− 〈y, ℓrz〉 .

Let t and s be different complex numbers. Applying (2.19) with y = φ(·, t) and
z = φ(·, s), we obtain

(2.20) (t− s)

∫ π

−π

φ(x, t)φ(x, s) dx = i

(

φ(π, t)φ(π, s) − φ(−π, t)φ(−π, s)
)

.

Replace s by tk for some k, and use φ(π, tk) = φ(−π, tk), then for, t 6= tk,

(2.21)

∫ π

−π

φ(x, t)φ(x, tk) dx = iφ(π, tk)
φ(π, t) − φ(−π, t)

t− tk
= iφ(π, tk)

∆(t)

t− tk
.

Taking the limit in (2.21) as t approaches tk, we have

(2.22) ‖φ(x, tk)‖2 :=

∫ π

−π

|φ(x, t)|2 dx = iφ(π, tk)∆
′(tk).

Equation (2.22) shows that the eigenvalues are all simple zeros of ∆(t), since
for all n, φ(−π, tk) = ϕ(−π, tk) 6= 0, and the left hand side also does not vanish
because it is the norm of an eigenfunction.

The same discussion of [21, p. 15] can be applied for the real zeros of C(t)
to get the last statement. �

3. Green’s function and eigenfunctions expansion

Green’s function of Πn could be derived using the technique of Stakgold
[25]. It appears while seeking solutions of the inhomogeneous boundary-value
problem. Indeed, let f(·) be continuous on [−π, π] and let g(x, ξ, t) be Green’s
function of the problem

(3.1) iy′ − ty = f(x), V (y) = 0, t ∈ C.

This means that any solution of (3.1) is

(3.2) y =

∫ π

−π

g(x, ξ, t)f(ξ) dξ,

where

g(x, ξ, t) =
i

1− e2itπ











eit(ξ−x+2π), ξ ≤ x,

eit(ξ−x), x ≤ ξ,

=
1

2π

∑

k∈Z

e−ikxeikξ

k − t
.

(3.3)
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We seek a solution of

(3.4) iy′ − ty +

n
∑

k=1

rk(x)

∫ π

−π

rk(τ) y(τ) dτ = f(x), V (y) = 0,

in terms of Green’s function g(x, ξ, t). The following lemma is needed for the
construction of Green’s function.

Lemma 3.1. Let t ∈ C, t 6= k, k ∈ Z and

(3.5) (Atrk)(x) :=

∫ π

−π

g(x, ξ, t) rk(ξ) dξ, bij = δij + 〈Atrj , ri〉 .

If t is not an eigenvalue of Πn, then

(3.6) B :=

∣

∣

∣

∣

∣

∣

∣

∣

∣

b11 b12 . . . b1n
b21 b22 . . . b2n
...

...
...

bn1 bn2 . . . bnn

∣

∣

∣

∣

∣

∣

∣

∣

∣

6= 0.

Proof. As we show in (3.1)–(3.2) the function (Atrk)(x) uniquely solves

(3.7) iy′ − ty = rk(x), V (y) = 0.

Assume that (3.6) is not true. Let αk be a non zero solution of the system

(3.8)











b11 b12 . . . b1n
b21 b22 . . . b2n
...

...
...

bn1 bn2 . . . bnn





















α1

α2

...
αn











= 0.

We show that RA(x, t) is an eigenfunction of (2.1)–(2.2), where RA(x, t) =
∑n

k=1 αk(Atrk)(x). Since each (Atrk)(x) satisfies (2.2), it remains to indicate
that RA(x, t) satisfies (2.1). Equation (3.8) leads to

n
∑

k=1





n
∑

j=1

αj 〈Atrj , rk〉+ αk



 rk(x) = 0.

Equivalently,

n
∑

j=1

αj

(

t Atrj(x) + rj(x)
)

+

n
∑

k=1

n
∑

j=1

αj 〈Atrj , rk〉 rk(x) = t

n
∑

j=1

αjAtrj(x).

Since (Atrk)(x) satisfies (3.7), the last equation become

ℓr(RA(x, t)) = t RA(x, t),

which is a contradiction. �
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Theorem 3.2. Let t be not an eigenvalue of Πn and f(·) be an L2(−π, π)-
function. Then the inhomogeneous boundary-value problem (3.4) has the unique
solution

y(x) =

∫ π

−π

G(x, ξ, t) f(ξ) dξ,

where G(x, ξ, t) is Green’s function of (3.4), which is given uniquely by

(3.9)

G(x, ξ, t) := g(x, ξ, t)+
1

B

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

b11 b12 . . . b1n (A∗
t r1)(ξ)

b21 b22 . . . b2n (A∗
t r2)(ξ)

...
...

...
...

bn1 bn2 . . . bnn (A∗
t rn)(ξ)

(Atr1)(x) (Atr2)(x) . . . (Atrn)(x) 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

where (A∗
t rn)(ξ) :=

∫ π

−π
g(x, ξ, t) rk(x) dx.

Proof. Let t ∈ C be neither an eigenvalue of Π nor an eigenvalue of Πn. Since
g(x, ξ, t) is Green’s function of (3.1), then the solution of the problem (3.4) is
given by

(3.10) y(x) = (Atf)(x)−
n
∑

k=1

〈y, rk〉 (Atrk)(x).

Again a direct application of [17, p. 66] will leads to

y(x) = (Atf)(x) +
1

B

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

b11 b12 . . . b1n 〈Atf, r1〉
b21 b22 . . . b2n 〈Atf, r2〉
...

...
...

...
bn1 bn2 . . . bnn 〈Atf, rn〉

(Atr1)(x) (Atr2)(x) . . . (Atrn)(x) 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Using (Atf)(x) =
∫ π

−π
g(x, ξ, t)f(ξ) dξ, we obtain

〈Atf, rk〉 =
∫ π

−π

∫ π

−π

g(x, ξ, t)f(ξ)rk(x) dξdx

=

∫ π

−π

f(ξ)

(∫ π

−π

g(x, ξ, t)rk(x) dx

)

dξ

=

∫ π

−π

f(ξ)(A∗
t rk)(ξ) dξ,

we get

(3.11) y(x) =

∫ π

−π

G(x, ξ, t)f(ξ) dξ.

We indicate that G(x, ξ, t) is defined and analytic at t = k, k ∈ Z if k is an
eigenvalue of Π and not an eigenvalue of Πn. Indeed, from (3.3) we can find a
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neighborhood of t = k ∈ Z, Dk, such that

g(x, ξ, t) =
e−ikxeikξ

2π(k − t)
+ g0(x, ξ, t), t ∈ D∗

k = Dk − {k},

where g0(x, ξ, t) := g0 is regular in Dk. Let t ∈ D∗
k, and

gl := gl(x, t) =

∫ π

−π

g0 rl(ξ) dξ, g∗l :=

∫ π

−π

g0 rl(x) dx,

gjl := gjl(t) = δjl +

∫ π

−π

∫ π

−π

g0 rl(ξ)rj(x) dξ dx, Ωl =

∫ π

−π

e−ikx rl(x) dx.

Thus
(3.12)

(Atrl)(x) = gl−
e−ikxΩl

2π(t− k)
, (A∗

t rl)(ξ) = g∗l −
eikξΩl

2π(t− k)
, bjl = gjl−

ΩlΩj

2π(t− k)
.

Substituting in (3.6) we obtain B = B0(t)
(

2π(t−k)
)

n , where

B0(t) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

2π(t− k)g11 − |Ω1|2 2π(t− k)g12 − Ω1Ω2 · · · 2π(t− k)g1n − Ω1Ωn

2π(t− k)g21 − Ω2Ω1 2π(t− k)g22 − |Ω2|2 · · · 2π(t− k)g2n − Ω2Ωn

...
...

...

2π(t− k)gn1 − ΩnΩ1 2π(t− k)gn2 − ΩnΩ2 · · · 2π(t− k)gnn − |Ωn|2

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Also the (n+1)× (n+1) determinant in (3.9) will have the form A0(x,ξ,t)
(

2π(t−k)
)

n+1 ,

where

A0(x, ξ, t) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2π(t− k)g11 − |Ω1|2 2π(t− k)g12 − Ω1Ω2 · · · 2π(t− k)g1n − Ω1Ωn 2π(t− k)g∗1 − eikξΩ1

2π(t− k)g21 − Ω2Ω1 2π(t− k)g22 − |Ω2|2 · · · 2π(t− k)g2n − Ω2Ωn 2π(t− k)g∗2 − eikξΩ2

...
...

...
...

2π(t− k)gn1 − ΩnΩ1 2π(t− k)gn2 − ΩnΩ2 · · · 2π(t− k)gnn − |Ωn|2 2π(t− k)g∗n − eikξΩn

2π(t− k)g1 − e−ikxΩ1 2π(t− k)g2 − e−ikxΩ2 · · · 2π(t− k)gn − e−ikxΩn 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Substituting in (3.9) we obtain for t ∈ D∗
k,

G(x, ξ, t) = g0 +
e−ikx eikξ

2π(k − t)
+

A0(x, ξ, t)

2π(t− k)B0(t)

= g0 +
C0(x, ξ, t)

2π(t− k)B0(t)
, C0 := A0(x, ξ, t)− e−ikx eikξ B0(t).(3.13)

Notice that from Lemma 3.1 above B0 6= 0 if t ∈ C− Z is not an eigenvalue of
Πn. Using the properties of determinants, we can see that

C0(x, ξ, t) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2π(t− k)g11 − |Ω1|2 2π(t− k)g12 − Ω1Ω2 · · · 2π(t− k)g1n − Ω1Ωn 2π(t− k)g∗1 − eikξΩ1

2π(t− k)g21 − Ω2Ω1 2π(t− k)g22 − |Ω2|2 · · · 2π(t− k)g2n − Ω2Ωn 2π(t− k)g∗2 − eikξΩ2

...
...

...
...

2π(t− k)gn1 − ΩnΩ1 2π(t− k)gn2 − ΩnΩ2 · · · 2π(t− k)gnn − |Ωn|2 2π(t− k)g∗n − eikξΩn

2π(t− k)g1 − e−ikxΩ1 2π(t− k)g2 − e−ikxΩ2 · · · 2π(t− k)gn − e−ikxΩn −e−ikx eikξ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Assume that Ω1 6= 0. Using elementary operations on rows of B0(t) and
C0(x, ξ, t) we get

B0(t) =
(

2π(t− k)
)n−1

B1(t) and C0(x, ξ, t) =
(

2π(t− k)
)n
C1(x, ξ, t), t ∈ D∗

k,
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where

B1(t) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

2π(t− k)g11 − |Ω1|2 2π(t− k)g12 − Ω1Ω2 · · · 2π(t− k)g1n − Ω1Ωn

g21 − g11
Ω2

Ω1
g22 − g12

Ω2

Ω1
· · · g2n − g1n

Ω2

Ω1

...
...

...

gn1 − g11
Ωn

Ω1
gn2 − g12

Ωn

Ω1
· · · gnn − g1n

Ωn

Ω1

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

and

C1(x, ξ, t) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2π(t− k)g11 − |Ω1|2 2π(t− k)g12 − Ω1Ω2 · · · 2π(t− k)g1n − Ω1Ωn 2π(t− k)g∗1 − eikξΩ1

g21 − g11
Ω2

Ω1
g22 − g12

Ω2

Ω1
· · · g2n − g1n

Ω2

Ω1
g∗2 − g∗1

Ω2

Ω1

...
...

...
...

gn1 − g11
Ωn

Ω1
gn2 − g12

Ωn

Ω1
· · · gnn − g1n

Ωn

Ω1
g∗n − g∗1

Ωn

Ω1

g1 − g11
e−ikx

Ω1
g2 − g12

e−ikx

Ω1
· · · gn − g1n

e−ikx

Ω1
−g∗1 e−ikx

Ω1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Substituting in (3.13), we get

(3.14) G(x, ξ, t) = g0(x, ξ, t) +
C1(x, ξ, t)

B1(t)
, t ∈ D∗

k.

Therefore G(x, ξ, t) can be defined at t = k to be

(3.15) G(x, ξ, k) := lim
t→k

G(x, ξ, t) = g0(x, ξ, k) +
C1(x, ξ, k)

B1(k)
.

If Ω1 = 0 and Ωs 6= 0, 2 ≤ s ≤ n, we can make the above elementary operations
after replacing the sth row in B0(t) and C0(x, ξ, t) by the first row. If Ωj = 0
for all j, then e−ikx will be an eigenfunction of Πn corresponding to t = k,
contradicting the assumption. �

Lemma 3.3. (1) The problem Πn has infinitely many real eigenvalues with no

finite limit point and the eigenfunctions corresponding to different eigenvalues

are orthogonal. The set of eigenfunctions is an orthogonal basis of L2(−π, π).
(2) For a fixed t ∈ C, G(x, ξ, t) has the eigenfunction expansion

(3.16) G(x, ξ, t) =
∑

k∈Z

φk(x)φk(ξ)

tk − t
, t 6= tk,

where {tk}k∈Z are the eigenvalues and {φk(·)}k∈Z is a corresponding com-

plete orthonormal set of eigenfunctions of Πn and the convergence is in the

L2((−π, π)× (−π, π))-norm.

Proof. (1) Assume first that zero is not an eigenvalue of Πn. Set

G(x, ξ) := G(x, ξ, 0),

hence G(x, ξ) is the Green’s function of Πn, i.e., any solution of

(3.17) iy +

n
∑

k=1

rk 〈y, rk〉 = f, V (y) = 0,

is

(3.18) y(x) =

∫ π

−π

G(x, ξ)f(ξ) dξ.
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Replacing f in (3.17) and (3.18) by ty, establishes the equivalence between Πn

and the Fredholm integral equation

(3.19) y(x) = t

∫ π

−π

G(x, ξ) y(ξ) dξ.

From (3.9) we notice that G(x, ξ) is symmetric. To prove the first statement
it suffices to show that G(x, ξ) is closed. This can be easily proved using the
method of Stakgold [25]. The orthogonality holds for eigenfunctions corre-
sponding to different eigenvalues. As for those belong to the same eigenvalue,
we use the Gram-Schmidt procedure.

If zero is an eigenvalue of Πn, we replace the eigenvalue parameter t by
t− c, where c is a constant different from all eigenvalues of Πn. Hence the new
problem has the same eigenfunctions but zero is not an eigenvalue.

(2) Since G(x, ξ) has the L2-convergent expansion, cf. [13],

(3.20) G(x, ξ) =
∑

k∈Z

φk(x)φk(ξ)

tk
,

and for t ∈ C, t 6= tk, {tk − t}k∈Z are the eigenvalues of (3.4) with the
eigenfunctions {φk(·)}k∈Z and G(x, ξ, t) is Green’s function of (3.4), then

(3.21) G(x, ξ, t) =
∑

k∈Z

φk(x)φk(ξ)

tk − t
, t 6= tk,

where the convergence is in the L2((−π, π) × (−π, π))-norm. �

Finally we discuss the asymptotic behavior of the eigenvalues. We have

| 〈ϕ, rk〉 | =
∣

∣

∣

∣

∫ π

−π

e−ixt rk(x) dx

∣

∣

∣

∣

≤ ‖r(·)‖L1(−π,π),

|Pk(x, t)| =
∣

∣

∣

∣

i e−ixt

∫ x

−π

e−iτt rk(τ) dτ

∣

∣

∣

∣

≤ ‖rk(·)‖L1(−π,π),

| 〈Pk, rj〉 | ≤ ‖rk(·)‖L1(−π,π) ‖rj(·)‖L1(−π,π).

(3.22)

Since limt→±∞ C(t) = 1, there exists a positive number L such that |C(t)| >
1/2, |t| > L (t is real). From (2.9), (2.16) and (3.22) we get

(3.23) ∆(t) = −2i sinπt+ o(1) as t→ ±∞.

The o-term tends to zero as t→ ±∞. Since (3.23) has infinite number of zeros,
the zeros of ∆(t) satisfies

(3.24) sinπt = o(1), as t→ ±∞.

Therefore the eigenvalues for large |t| has the asymptote

(3.25) tn ∼ n as n→ ±∞.

In the way from (2.9) we can get

(3.26) |φ(x, t)− ϕ(x, t)| = o(1).
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Therefore,

(3.27) φ(x, t) ∼ ϕ(x, t) as t→ ±∞.

4. Perturbed sampling theorems

According to the spectral analysis of the previous sections, the sampling
analysis associated with Πn will be divided into two cases, i.e., when C(t) has
real zeros or not. Assume that {tk}k∈Z denotes the set of all eigenvalues of
Πn, which are all simple. Although when C(t) has no real zeros the function
φ in (2.9) will generate all the eigenfunctions, φ may be not defined for all
t ∈ C, because C(t) may have complex zeros. So in this case we assume that
the eigenvalue parameter t is real.

Theorem 4.1. Assume that C(t) 6= 0 for all t ∈ R, g(·) ∈ L2(−π, π) and

(4.1) f(t) =

∫ π

−π

g(x)φ(x, t) dx, t ∈ R.

Then f(t) is an entire function which can be reconstructed via the sampling

series

(4.2) f(t) =
∑

k∈Z

f(tk)
∆(t)

(t− tk)∆′(tk)
.

The sampling series (4.2) converges absolutely and uniformly on R.

Proof. Since {φ(·, tk)}k∈Z is a complete orthogonal set of L2(−π, π), then ap-
plying Parseval’s relation to (4.1) leads to

(4.3) f(t) =
∑

k∈Z

〈g(·), φ(·, tk)〉 〈φ(·, t), φ(·, tk)〉
‖φ(·, tk)‖2

=
∑

k∈Z

f(tk) 〈φ(·, t), φ(·, tk)〉
‖φ(·, tk)‖2

.

Combining (2.21)–(4.3) we obtain (4.2) with a pointwise convergence on R. It
remains to prove the uniform convergence of (4.2). Let

φ̂(·, tk) = φ(·, tk)/‖φ(·, tk)‖.
We use (4.3) and the Cauchy-Schwartz’ inequality to obtain
∣

∣

∣

∣

f(t)−
∑

|k|≤N

〈

g, φ̂k

〉〈

φ, φ̂k

〉

∣

∣

∣

∣

≤
[ ∞
∑

|k|>N

|
〈

g, φ̂k

〉

|2
]

1
2
[ ∞
∑

|k|>N

|
〈

φ, φ̂k

〉

|2
]

1
2

.

But, in view of Bessel’s inequality
∞
∑

|k|>N

|
〈

g, φ̂k

〉

|2 −→ 0 as N −→ ∞.

Again from Bessel’s inequality, we have
∞
∑

|k|>N

|
〈

φ, φ̂k

〉

|2 ≤ ‖φ(x, t)‖2.
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We will show that ‖φ(x, t)‖2 is bounded on R. From (2.5) and (2.9) it is
enough to show that 1/C(t) is bounded. Since limt→±∞ C(t) = 1, there exists
a positive number L such that |C(t)| > 1/2, |t| > L. Since |C(t)| is continuous
on [−L,L], it assumes its minimum m on this interval and clearly m > 0.
Hence 1/|C(t)| ≥M, M = max{1/m, 2} for all t ∈ R. �

In the following we study the sampling problem associated with Πn when
C(t) has real zeros. In this case we have multiple eigenvalues. Therefore, the
sampling problem may be treated by extending the ideas of [3, 14, 15] to the
case of multiple eigenvalues with multiplicity ≥ 2, or by the use of Green’s
function. Here we use the last technique. We introduce a sampling theorem
associated with Green’s function of problem Πn above.

Since an eigenvalue tk may have more than one eigenfunction, then expansion
(3.16) may have the form

(4.4) G(x, ξ, t) =
∑

k∈Z

νk
∑

ν=1

φk,ν (x)φk,ν(ξ)

tk − t
, t 6= tk,

where νk is the multiplicity of tk, i.e., 1 ≤ νk ≤ k− ν+1. Let ξ0 ∈ [−π, π] such
that φk(ξ0) 6= 0 for all k. Such an ξ0 exists since an eigenfunction may vanish
only on a subset of measure zero of [−π, π]. Define the function G0(x, t) ∈
L2(−π, π) to be

(4.5) G0(x, t) := G(x, ξ0, t).

Since {φk(·)}k∈Z is a complete orthonormal set of L2(−π, π), (4.5) can
be viewed as the Fourier expansion of G0(x, t) with the Fourier coefficients
φk(ξ0)
tk−t

, t 6= tk. Also, G0(x, t) is a meromorphic function with simple poles tk.

The residue at each pole tk is

(4.6) rk =

νk
∑

ν=1

φk,ν (x)φk,ν(ξ0).

Define for t ∈ C the following product
(4.7)

ω(t) =







t
∏∞

n=−∞, n6=0

(

1− t
tn

)

exp(t/tn), if t0 = 0 is an eigenvalue,
∏∞

n=−∞

(

1− t
tn

)

exp(t/tn), if zero is not an eigenvalue,

which is convergent since the eigenvalues {tk}k∈Z have the asymptotes (3.25).
We may omit the factor exp(t/tn) if the product is convergent without it.
Define the function Φ(·, t) to be

(4.8) Φ(x, t) := ω(t)G0(x, t), t ∈ C.

It is an entire function of t for each fixed x. The second sampling theorem of
this paper is the following. It gives another perturbed WKS sampling theorem,
which is a perturbed form of the WKS’s theorem as derived by Haddad et
al. [18].
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Theorem 4.2. Let g ∈ L2(−π, π) and

(4.9) F (t) =

∫ π

−π

g(x)Φ(x, t) dx, t ∈ C.

Then F (t) is an entire function that admits the sampling representation

(4.10) F (t) =
∑

k∈Z

F (tk)
ω(t)

(t− tk)ω′(tk)
.

The sampling series (4.10) is absolutely uniformly convergent on any compact

subset of C and uniformly on R.

Proof. Since both g and Φ are L2-functions and {φk(·)}k∈Z is a complete or-
thonormal set in L2(−π, π), then

(4.11) g(x) =
∑

k∈Z

〈g, φk〉φk(x), Φ(x, t) =
∑

k∈Z

〈Φ, φk〉φk(x)

are the Fourier series of g and Φ, respectively. Here 〈g, φk〉 and 〈Φ, φk〉 are the
Fourier coefficients. Using Parseval’s identity, we get

(4.12) F (t) =
∑

k∈Z

〈g, φk〉 〈Φ, φk〉 .

In the view of (4.4) above, equation (4.12) can be rewritten in the form

(4.13) F (t) =
∑

k∈Z

νk
∑

ν=1

〈g, φk,ν〉 〈Φ, φk,ν〉 .

From the definition of Φ, we obtain

(4.14) 〈Φ, φk,ν〉 =
ω(t)

tk − t
φk,ν(ξ0).

Since

(4.15) F (t) = ω(t)

∫ π

−π

g(x)H0(x, t)dx

and H0(x, t) has simple poles at the eigenvalues with the residues (4.6), then

F (tk) = lim
t→tk

ω(t)

t− tk

∫ π

−π

(t− tk)g(x)H0(x, t) dx

= −ω′(tk)
νk
∑

k=1

φk,ν(ξ0)

∫ π

−π

g(x)φk,ν (x) dx

= −ω′(tk)
νk
∑

k=1

φk,ν(ξ0)〈g, φk,ν〉.

(4.16)

Substituting from (4.14) and (4.16) in (4.13), one gets (4.10).
The proof of uniform and absolute convergence on R can be established

with a slight modification of that of the previous theorem. As for uniform
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and absolute convergence on C we use the same arguments of the proof of the
previous theorem and the identity of [13, p. 50] that guarantees the boundedness
of ‖Φ(·, t)‖ on compact subsets of C. �

5. Examples

Example 5.1. Consider the perturbed eigenvalue problem

(5.1) iy′+
2
∑

k=1

rk(x)

∫ π

−π

rk(τ) y(τ) dτ = ty, y(π)− y(−π) = 0, −π ≤ x ≤ π,

where

(5.2) r1(x) =

{

1, −π ≤ x ≤ 0,

0, 0 < x ≤ π,
r2(x) =

{

0, −π ≤ x ≤ 0,

1, 0 < x ≤ π.

In the previous notations we have
(5.3)

P1(x, t) =

{

1−e−it(x+π)

t
, −π ≤ x ≤ 0,

0, 0 < x ≤ π,
P2(x, t) =

{

0, −π ≤ x ≤ 0,
1−e−itx

t
, 0 < x ≤ π.

The function C(t) will be

(5.4) C(t) =
e−2iπt

(

eiπt
[

(π − t)t+ i
]

− i
)2

t4
,

which does not vanish for any t ∈ R. Hence, cf. (2.9),

(5.5) φ(x, t) = e−itx −
(

−1 + eiπt
)

t

ieiπt((π − t)t+ i) + 1

(

eiπtP1(x, t) + P2(x, t)

)

,

is the solution for any t ∈ R, and the eigenvalues are the zeros of

(5.6) ∆(t) = (1− eiπt)

(

(π − t)t

eiπt((π − t)t+ i)− i
+ 1

)

.

Some of the eigenvalues can be computed explicitly and the other cannot be
computed concretely. The eigenvalues are t2k = 2k, k ∈ Z∗ := Z − {0}, with
corresponding eigenfunctions φ(x, 2k) = e−2ikx, and the other eigenvalues t2k+1

are the zeros of

(5.7) tan
πt

2
= (π − t)t, t 6= 0.

Note that the zeros of (5.7) have the asymptotes t2k+1 ∼ 2k + 1 as we expect
from (3.25). Following Theorem 4.1 above, the transform
(5.8)

f(t) =

∫ π

−π

g(x)

(

e−itx − (−1+eiπt)t
ieiπt((π−t)t+i)+1

(

eiπtP1(x, t) + P2(x, t)

))

d x, t ∈ R,
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has the sampling form

(5.9) f(t) =

∞
∑

k=0

f(t2k+1)
∆(t)

(t− t2k+1)∆′(t2k+1)
+
∑

k∈Z∗

f(2k)
∆(t)

2iπ(2k − t)
.

Now we illustrate the figure of perturbed transform (5.8) and the unperturbed
one when g(x) = 1. We have

(5.10) fu(t) =

∫ π

−π

e−itxd x =
2 sin tπ

t
,

fp(t) =

∫ π

−π

(

e−itx −
(

−1 + eiπt
)

t

ieiπt((π − t)t+ i) + 1

(

eiπtP1(x, t) + P2(x, t)

)

)

dx

=
2 sin tπ

t
+

(e2iπt − 1)(i(e−iπt − 1)− πt)

t (ieiπt((π − t)t+ i) + 1)
.

(5.11)

Figures below illustrate ℜfp(t), ℜfu(t) and ℑfp(t), ℑfu(t), respectively. No-
tice that ℑfu(t) ≡ 0 on R and ℑfp(t) is very small. Also ℜfu(t) and ℜfp(t)
eventually merges.

12 14 16 18 20

-0.2

-0.1

0.1

0.2

Figure 1. ℜfp(t) andℜfu(t), when 10 < t < 20.

12 14 16 18 20

-0.01

-0.005

0.005

0.01

0.015

0.02

Figure 2. ℑfp(t) andℑfu(t), when 10 < t < 20.
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Example 5.2. Consider the problem (5.1) with

(5.12) r1(x) =

{

1, −π ≤ x ≤ 0,

0, 0 < x ≤ π,
r2(x) =

{

0, −π ≤ x ≤ 0,
√

2
π
, 0 < x ≤ π.

After some computations we have
(5.13)

P1(x, t)=

{

1−e−it(x+π)

t
, −π ≤ x ≤ 0,

0, 0 < x ≤ π,
P2(x, t)=

{

0, −π ≤ x ≤ 0,
√

2
π

1−e−itx

t
, 0 < x ≤ π.

The function C(t) will be

C(t) = det(aij)1≤i, j≤2 =

∣

∣

∣

∣

∣

∣

∣

1− i−ie−iπt+πt
t2

0

0 1− 2(i(1−e−iπt)+πt)
πt2

∣

∣

∣

∣

∣

∣

∣

= −e
−2iπt

(

eiπt((π − t)t+ i)− i
) (

eiπt(π(t− 2)t− 2i) + 2i
)

πt4
.

(5.14)

The function C(t) has a unique real zero at t = 2. From (5.14) the rank of
(aij)1≤i, j≤2, cf. (2.8) is one when t = 2, it is a simple eigenvalue as zero of
C(t). Obviously 〈ϕ(x, 2), r1(x)〉 = 〈ϕ(x, 2), r2(x)〉 = 0. Since t = 2 is also an
eigenvalue of the problem Π, then it is a double eigenvalue of the problem and
the corresponding eigenfunctions are

P2(x, 2) =

{

0, −π ≤ x ≤ 0,
1−e−2ix

√
2π

, 0 < x ≤ π,
ϕ(x, 2) = e−2ix.

For t 6= 2, the solution of the integro-differential equation is

φ(x, t) = e−itx + t
(

− 1 + eiπt
)

× eiπt

[

−2+eiπt(iπ(t−2)t+2)
]

P1(x,t)+
√
2π
[

−1+eiπt(1−i(π−t)t)
]

P2(x,t)

(eiπt((π−t)t+i)−i)(eiπt(π(t−2)t−2i)+2i) ,

(5.15)

and the rest of the eigenvalues are the zeros of

(5.16) ∆(t) = (1− eiπt)

(

π(t− 2)t

eiπt(π(t− 2)t− 2i) + 2i
+ 1

)

.

Also some of the eigenvalues are t2k = 2k, k ∈ Z∗ := Z−{0}, with correspond-
ing eigenfunctions ϕ(x, 2k) = e−2ikx. The other eigenvalues t2k+1 are the zeros
of

(5.17) tan
πt

2
= π(1 − t

2
)t, t 6= 0, 2.

Here we have

(5.18) (Atr1)(x) =
1

t(1 + eitπ)

{

e−itx − (1 + eitπ), −π ≤ x ≤ 0,

−eit(π−x), 0 < x ≤ π,
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(5.19) (Atr2)(x) =

√

2
π

t(1 + eitπ)

{

−e−itx, −π ≤ x ≤ 0,

eit(π−x) − (1 + eitπ), 0 < x ≤ π.

Thus G(x, ξ, t) can be computed from (3.9). Hence if ξ0 is chosen in [−π, π]
and Φ(x, t) is as in (4.8) above, then the transform

F (t) =

∫ 1

0

g(x)Φ(x, t) dx, t ∈ C, g(·) ∈ L2(−π, π),

admits the sampling representation

(5.20) f(t) =
∑

k∈Z

f(t2k+1)
ω(t)

(t− t2k+1)ω′(t2k+1)
+
∑

k∈Z∗

f(2k)
ω(t)

2iπ(2k − t)
.

Example 5.3. Consider the problem (5.1) with

(5.21) r1(x) =

{
√

2
π
, −π ≤ x ≤ 0,

0, 0 < x ≤ π,
r2(x) =

{

0, −π ≤ x ≤ 0,
√

2
π
, 0 < x ≤ π.

We have the following
(5.22)

P1(x, t)=

{
√

2
π

1−e−it(x+π)

t
, −π ≤ x ≤ 0,

0, 0 < x ≤ π,
P2(x, t)=

{

0, −π ≤x≤ 0,
√

2
π

1−e−itx

t
, 0 < x ≤ π.

The function C(t) will be

C(t) = det(aij)1≤i, j≤2 =

∣

∣

∣

∣

∣

∣

∣

1− 2(i(1−e−iπt)+πt)
πt2

0

0 1− 2(i(1−e−iπt)+πt)
πt2

∣

∣

∣

∣

∣

∣

∣

=
e−2iπt

(

eiπt(π(t− 2)t− 2i) + 2i
)2

π2t4
,

(5.23)

The function C(t) has a unique zero at t = 2. Since from (5.23) the rank of
(aij)1≤i, j≤2 is two when t = 2, it is a double eigenvalue as a zero of C(t).
Obviously 〈ϕ(x, 2), r1(x)〉 = 〈ϕ(x, 2), r2(x)〉 = 0. Since t = 2 is also an eigen-
value of the problem Π, then it is a triple eigenvalue of the problem and the
corresponding eigenfunctions are

(5.24)

P1(x, 2) =

{

1−e−2ix
√
2π

, −π ≤ x ≤ 0,

0, 0 < x ≤ π,

P2(x, 2) =

{

0, −π ≤ x ≤ 0,
1−e−2ix

√
2π

, 0 < x ≤ π,

ϕ(x, 2) = e−2ix.
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If t 6= 2 the solution of the integro-differential equation here is

(5.25) φ(x, t) = e−itx −
(

−1 + eiπt
)√

2πt

eiπt(−iπ(t− 2)t− 2) + 2

(

eiπtP1(x, t) + P2(x, t)

)

,

with

(5.26) ∆(t) = (1− eiπt)

(

π(t− 2)t

eiπt(π(t− 2)t− 2i) + 2i
+ 1

)

.

Again some of the eigenvalues are t2k = 2k, k ∈ Z∗ := Z − {0}, and the rest
are the zeros of (5.17). Here we have

(5.27) (Atr1)(x) =

√

2
π

t(1 + eitπ)

{

e−itx − (1 + eitπ), −π ≤ x ≤ 0,

−eit(π−x), 0 < x ≤ π,

and

(5.28) (Atr2)(x) =

√

2
π

t(1 + eitπ)

{

−e−itx, −π ≤ x ≤ 0,

eit(π−x) − (1 + eitπ), 0 < x ≤ π.

Also G(x, ξ, t) can be computed from (3.9). If ξ0 ∈ [−π, π] and Φ(x, t) is as in
(4.8) above, then the transform

F (t) =

∫ 1

0

g(x)Φ(x, t) dx, t ∈ C, g(·) ∈ L2(−π, π),

admits the sampling representation

(5.29) f(t) =
∑

k∈Z

f(t2k+1)
ω(t)

(t− t2k+1)ω′(t2k+1)
+
∑

k∈Z∗

f(2k)
ω(t)

2iπ(2k − t)
.

Example 5.4. Here we consider a problem of rank one, which is

(5.30) iy′ +
1

2π

∫ π

−π

y(τ) dτ = ty, y(π)− y(−π) = 0.

In this case we have,

(5.31) P (x, t) =
1√
2π

(

1− e−it(x+π)

t

)

, C(t) = 1+
i

2πt2

(

2itπ+ e−2itπ− 1

)

,

(5.32)

φ(x, t) = e−itx+
sin tπ(1 − e−it(x+π))

πt2C(t)
, ∆(t) = −2i sin tπ

(

1 +
i(1− e−2itπ)

2πt2C(t)

)

.

One sees that the eigenvalues are the zeros of ∆(t), which are tn = n, n ∈ Z∗

with the corresponding eigenfunctions {e−i n x}n∈Z∗ and t = 1, the only real
zero of C(t), with corresponding eigenfunctions φ(x, 1) = e−ix and P (x, 1) =
1−e−i(x+π)

√
2π

. This means that t = 1 is a double eigenvalue of the problem. Also

(5.33) ω(t) =

∞
∏

n=−∞, n6=0

(

1− t

tn

)

=
sinπt

πt
, ω′(tn) =

(−1)n

n
.
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The transform defined as in Theorem 4.2 above has the sampling representation

(5.34) F (t) =
∑

n∈Z∗

F (n)
n sinπ(t− n)

πt(t− n)
t ∈ C.
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[10] P. L. Butzer and G. Schöttler, Sampling theorems associated with fourth and higher

order self-adjoint eigenvalue problems, J. Comput. Appl. Math. 51 (1994), no. 2, 159–
177.

[11] L. L. Campbell, A comparison of the sampling theorems of Kramer and Whittaker,
SIAM J. Appl. Math. 12 (1964), 117–130.

[12] E. A. Catchpole, A Cauchy problem for an ordinary integro-differential equation, Proc.
Roy. Soc. Edinburgh Sect. A 72 (1974), no. 1, 39–55.

[13] J. A. Cochran, The Analysis of Linear Integral Equations, McGraw-Hill, New York,

1972.
[14] W. N. Everitt and G. Nasri-Roudsari, Sturm-Liouville problems with coupled boundary

conditions and Lagrange interpolation series, J. Comput. Anal. Appl. 1 (1999), no. 4,
319–347.

[15] , Sturm-Liouville problems with coupled boundary conditions and Lagrange in-

terpolation series II, Rend. Mat. Appl. (7) 20 (2000), 199–238.
[16] W. N. Everitt and A. Poulkou, Kramer analytic kernels and first-order boundary value

problems, J. Comput. Appl. Math. 148 (2002), no. 1, 22–47.
[17] I. Gohberg and S. Goldberg, Basic Operator Theory, Birkhäuser, Boston, 1980.
[18] A. H. Haddad, K. Yao, and J. B. Thomas, General methods for the derivation of sam-

pling theorems, IEEE Trans. Inform. Theory 13 (1967), 227–230.
[19] J. R. Higgins, Sampling Theorey in Fourier and Signal Analysis: Foundations, Oxford

University Press, Oxford, 1996.



990 M. H. ANNABY, O. H. EL-HADDAD, AND H. A. HASSAN

[20] V. Kotel’nikov, On the carrying capacity of the ether and wire in telecommunications,
(Russian) Material for the first all union conference on questions of communications,
Izd. Red. Upr. Svyazi RKKA, Moscow, 1933.

[21] M. A. Naimark, Linear Differential Operators. Part I: Elementary Theory of Linear

Differential Operators, George Harrap, London, 1967.
[22] R. Paley and N. Wiener Fourier Transforms in the Complex Domain, Amer. Math. Soc.

Colloquium Publ. Ser. Vol 19, Amer. Math. Soc., Providence, RI, 1934.
[23] C. Shannon, Communication in the presence of noise, Proc. I.R.E. 37 (1949), 10–21.
[24] L. O. Silva and J. H. Toloza, Bounded rank-one perturbations in sampling theory, J.

Math. Anal. Appl. 345 (2008), no. 2, 661–669.
[25] I. Stakgold, Green’s Functions and Boundary Value Problems, John Wiley, New York,

1987.
[26] E. Whittaker, On the functions which are represented by the expansion of the interpo-

lation theory, Proc. Roy. Soc. Edinburgh Sec. A 35 (1915), 181–194.
[27] A. I. Zayed, Advances in Shannon’s Sampling Theory, CRC, Boca Raton, 1993.

Mahmoud H. Annaby

Department of Mathematics

Faculty of Science

Cairo University

Giza, Egypt

E-mail address: mhannaby@yahoo.com

Omar H. El-Haddad

Department of Mathematics

Faculty of Science

Cairo University

Beni-Suef, Egypt

E-mail address: oel-haddad@yahoo.com

Hassan A. Hassan

Department of Mathematics

Faculty of Science

Cairo University

Giza, Egypt

Current Address

Department of Mathematics

Faculty of Basic Education

PAAET, Kuwait

E-mail address: hassanatef1@gmail.com




