• Title/Summary/Keyword: first order shear deformation

Search Result 445, Processing Time 0.021 seconds

Modeling and simulation of partially delaminated composite beams

  • Mahieddine, A.;Ouali, M.;Mazouz, A.
    • Steel and Composite Structures
    • /
    • v.18 no.5
    • /
    • pp.1119-1127
    • /
    • 2015
  • A finite-element model for beams with partially delaminated layers is used to investigate their behavior. In this formulation account is taken of lateral strains and the first-order shear deformation theory is used. Both displacement continuity and force equilibrium conditions are imposed between the regions with and without delamination. Numerical results of the present model are presented and its performance is evaluated for static and dynamic problems.

Deducing thick plate solutions from classical thin plate solutions

  • Wang, C.M.
    • Structural Engineering and Mechanics
    • /
    • v.11 no.1
    • /
    • pp.89-104
    • /
    • 2001
  • This paper reviews the author's work on the development of relationships between solutions of the Kirchhoff (classical thin) plate theory and the Mindlin (first order shear deformation) thick plate theory. The relationships for deflections, stress-resultants, buckling loads and natural frequencies enable one to obtain the Mindlin plate solutions from the well-known Kirchhoff plate solutions for the same problem without much tedious mathematics. Sample thick plate solutions, deduced from the relationships, are presented as benchmark solutions for researchers to use in checking their numerical thick plate solutions.

Static, Buckling and Free Vibration Analyses of Fibrous Composite Plate using Improved 8-Node Strain-Assumed Finite Formulation by Direct Modification (직접수정된 8절점 가정변형률 유한요소를 이용한 복합적층판의 정적, 좌굴 및 자유진동 해석)

  • Park, Won-Tae;Chun, Kyoung-Sik;Yhim, Sung-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.4
    • /
    • pp.107-114
    • /
    • 2004
  • In this paper, a simple improved 8-node finite element for the finite element analysis of fibrous composite plates is presented by using the direct modification. We drive explicit expressions of shape functions for the 8-node element with bilinear element geometry, which is modified so that it can represent any quadratic fields in Cartesian coordinates. The refined first-order shear deformation theory is proposed, which results in parabolic through-thickness distribution of the transverse shear strains and stresses from the formulation based on the third-order shear deformation theory. It eliminates the need for shear correction factors in the first-order theory. This finite element is further improved by combined use of assumed strain, modified shape function, and refined first-order theory. To show the effectiveness of our simple modification on the 8-node finite elements, numerical studies are carried out the static, buckling and free vibration analysis of fibrous composite plates.

Critical Buckling Temperatures of Anisotropic Laminated Composite Plates considering a Higher-order Shear Deformation (고차전단변형을 고려한 비등방성 적층복합판의 임계좌굴온도)

  • Han, Seong Cheon;Yoon, Seok Ho;Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.2 s.35
    • /
    • pp.201-209
    • /
    • 1998
  • The presence of elevated temperature can alter significantly the structural response of fibre-reinforced laminated composites. A thermal environment causes degradation in both strength and constitutive properties, particularly in the case of fibre-reinforced polymeric composites. Furthermore, associated thermal expansion, either alone or in combination with mechanically induced deformation, can result in buckling, large deflections, and excessively high stress levels. Consequently, it is often imperative to consider environmental effects in the analysis and design of laminated systems. Exact analytical solutions of higher-order shear deformation theory is developed to study the thermal buckling of cross-ply and antisymmetric angle-ply rectangular plates. The buckling behavior of moderately thick cross-ply and antisymmetric angle-ply laminates that are simply supported and subject to a uniform temperature rise is analyzed. Numerical results are presented for fiber-reinforced laminates and show the effects of ply orientation, number of layers, plate thickness, and aspects ratio on the critical buckling temperature and compared with those obtained using the classical and first-order shear deformation theory.

  • PDF

Thermally induced mechanical analysis of temperature-dependent FG-CNTRC conical shells

  • Torabi, Jalal;Ansari, Reza
    • Structural Engineering and Mechanics
    • /
    • v.68 no.3
    • /
    • pp.313-323
    • /
    • 2018
  • A numerical study is performed to investigate the impacts of thermal loading on the vibration and buckling of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) conical shells. Thermo-mechanical properties of constituents are considered to be temperature-dependent. Considering the shear deformation theory, the energy functional is derived, and applying the variational differential quadrature (VDQ) method, the mass and stiffness matrices are obtained. The shear correction factors are accurately calculated by matching the shear strain energy obtained from an exact three-dimensional distribution of the transverse shear stresses and shear strain energy related to the first-order shear deformation theory. Numerical results reveal that considering temperature-dependent material properties plays an important role in predicting the thermally induced vibration of FG-CNTRC conical shells, and neglecting this effect leads to considerable overestimation of the stiffness of the structure.

Constitutive Equations for Dilute Bubble Suspensions and Rheological Behavior in Simple Shear and Uniaxial Elongational Flow Fields

  • Seo Dongjin;Youn Jae Ryoun
    • Fibers and Polymers
    • /
    • v.6 no.2
    • /
    • pp.131-138
    • /
    • 2005
  • A theoretical model is proposed in order to investigate rheological behavior of bubble suspension with large deformation. Theoretical constitutive equations for dilute bubble suspensions are derived by applying a deformation theory of ellipsoidal droplet [1] to a phenomenological suspension theory [2]. The rate of deformation tensor within the bubble and the time evolution of interface tensor are predicted by applying the proposed constitutive equations, which have two free fitting parameters. The transient and steady rheological properties of dilute bubble suspensions are studied for several capillary numbers (Ca) under simple shear flow and uniaxial elongational flow fields. The retraction force of the bubble caused by the interfacial tension increases as bubbles undergo deformation. The transient and steady relative viscosity decreases as Ca increases. The normal stress difference (NSD) under the simple shear has the largest value when Ca is around 1 and the ratio Of the first NSD to the second NSD has the value of 3/4 for large Ca but 2 for small Ca. In the uniaxial elongational flow, the elongational viscosity is three times as large as the shear viscosity like the Newtonian fluid.

Dynamic Characteristics of Anisotropic Laminated Plates (이방성 복합재료의 동적특성에 관한 연구)

  • Park, Sungjin;Baek, Jooeun
    • Journal of the Society of Disaster Information
    • /
    • v.12 no.1
    • /
    • pp.62-68
    • /
    • 2016
  • In this study, the impact problems are brought up and the formulation by isoparametric element is attempted for the purpose of analyzing the response characteristics of laminated plate receiving impact load based on the first-order shear deformation theory expanded from the Mindlin plate theory. The result of static analysis and dynamic analysis is drawn through the numerical analysis rectangular and circular plates of antisymmetric Angle-Ply laminated plate using the finite element method and the analysis on each displacement is compared.

Smart analysis of doubly curved piezoelectric nano shells: Electrical and mechanical buckling analysis

  • Arefi, Mohammad
    • Smart Structures and Systems
    • /
    • v.25 no.4
    • /
    • pp.471-486
    • /
    • 2020
  • Stability analysis of three-layered piezoelectric doubly curved nano shell with accounting size dependency is performed in this paper based on first order shear deformation theory and curvilinear coordinate system relations. The elastic core is integrated with sensor and actuator layers subjected to applied electric potentials. The principle of virtual work is employed for derivation of governing equations of stability. The critical electrical and mechanical buckling loads are evaluated in terms of important parameters of the problem such as size-dependent parameter, two principle angle of doubly curved shell and two parameters of Pasternak's foundation. One can conclude that mechanical buckling loads are decreased with increase of nonlocal parameter while the electrical buckling loads are increased.

Examination of non-homogeneity and lamination scheme effects on deflections and stresses of laminated composite plates

  • Zerin, Zihni;Turan, Ferruh;Basoglu, Muhammed Fatih
    • Structural Engineering and Mechanics
    • /
    • v.57 no.4
    • /
    • pp.603-616
    • /
    • 2016
  • In this study, a convenient formulation for the bending of laminated composite plates that hold non-homogeneous properties is examined. The constitutive equations of first order shear deformation plate theory are obtained using Hamilton Principle. The effect of non-homogeneity, lamination schemes and aspect ratio on the deflections and stresses is analysed. It is understood from the study that economical and optimum designs for laminated composite plates can be achieved by changing lamination scheme and by considering non-homogeneity response of composite plate.

Finite element dynamic analysis of laminated composite beams under moving loads

  • Kahya, Volkan
    • Structural Engineering and Mechanics
    • /
    • v.42 no.5
    • /
    • pp.729-745
    • /
    • 2012
  • This study presents dynamic analysis of laminated beams traversed by moving loads using a multilayered beam element based on the first-order shear deformation theory. The present element consists of N layers with different thickness and material property, and has (3N + 7) degrees of freedom corresponding three axial, four transversal, and 3N rotational displacements. Delamination and interfacial slip are not allowed. Comparisons with analytical and/or numerical results available in literature for some illustrative examples are made. Numerical results for natural frequencies, deflections and stresses of laminated beams are given to explain the effect of load speed, lamina layup, and boundary conditions.