References
- Bulson, P.S. (1970), The Stability of Flat Plates, Chatto and Windus, London, U.K.
- Column Research Committee of Japan (1971), Handbook of Structural Stability, Corona, Tokyo, Japan.
- Karunasena, W., Wang, C.M., Kitipornchai, S. and Xiang, Y. (1997), "Exact solutions for axisymmetric bending of continuous annular plates", Computers and Structures, 63(3), 455-464. https://doi.org/10.1016/S0045-7949(96)00328-8
- Kirchhoff, G. (1850), "Uber das gleichgwich und die bewegung einer elastischen scheibe", J. Angew. Math., 40, 51-88.
- Lee, K.H., Lim, G.T. and Wang, C.M. "Thick Levy plates revisited", International Journal of Solids and Structures, submitted.
- Leissa, A.W. (1969), Vibration of Plates, U.S. Government Printing Office, NASA SP-160, reprinted by the Acoustical Society of America in 1993.
- Lim, G.T. and Wang, C.M. (2000), "Bending of annular sectorial Mindlin plates using Kirchhoff results", European Journal of Mechanics: A-Solids, in press.
- Mindlin, R.D. (1951), "Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates", Trans. ASME, Journal of Applied Mechanics, 18, 31-38.
- Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", Trans. ASME, Journal of Applied Mechanics, 51, 745-752. https://doi.org/10.1115/1.3167719
- Reddy, J.N. (1999), Theory and Analysis of Elastic Plates, Taylor and Francis, Philadelphia, U.S.
- Reddy, J.N., Wang, C.M. and Lam, K.Y. (1997), "Unified finite elements based on the classical and shear deformation theories of beams and axisymmetric circular plates", Communications in Numerical Methods in Engineering, 13, 495-510. https://doi.org/10.1002/(SICI)1099-0887(199706)13:6<495::AID-CNM82>3.0.CO;2-9
- Reddy, J.N., Wang, C.M. and Kitipornchai, S. (1999), "Axisymmetric bending of functionally graded circular and annular plates", European Journal of Mechanics: A/Solids, 18, 185-199. https://doi.org/10.1016/S0997-7538(99)80011-4
- Reismann, H. (1988), Elastic Plates: Theory and ApplicationsS John Wiley & Sons, Inc., New York.
- Roark, R.J. and Young, W.C. (1975), Formulas for Stress and Strain, 5th Edition, McGraw-Hill, New York.
- Szilard, R. (1974), Theory and Analysis of Plates, Prentice-Hall, Englewood Cliffs, New Jersey.
- Timoshenko, S. and Woinowsky-Krieger, S. (1959), Theory and Plates and Shells, McGraw-Hill, New York.
- Wang, C.M. (1994), "Natural frequencies formula for simply supported Mindlin plates", Trans. ASME, Journal of Vibration and Acoustics, 116(4), 536-540. https://doi.org/10.1115/1.2930460
- Wang, C.M., Xiang, Y. and Kitipornchai, S. (1994), "Buckling solutions of rectangular Mindlin plates under uniform shear", Journal of Engineering Mechanics, ASCE, 120(11), 2462-2470. https://doi.org/10.1061/(ASCE)0733-9399(1994)120:11(2462)
- Wang, C.M. (1995a), "Allowance for prebuckling deformations in buckling load relationship between Mindlin and Kirchhoff simply supported plates of general polygonal shape", Engineering Structures, 17(6), 413-418. https://doi.org/10.1016/0141-0296(95)00042-6
- Wang, C.M. (1995b), "Deflection of sandwich plates in terms of corresponding Kirchhoff plate solutions", ,Archive of Applied Mechanics, 65(6), 408-414. https://doi.org/10.1007/BF00787534
- Wang, C.M. (1995c), "Buckling of polygonal and circular sandwich plates", AIAA Journal, 33(5), 962-964. https://doi.org/10.2514/3.12664
- Wang, C.M. (1995d), "Vibration frequencies of simply supported polygonal sandwich plates via Kirchhoff solutions", Journal of Sound and Vibration, 190(2), 255-260.
- Wang, C.M. (1996a), Discussion on "Postbuckling of moderately thick circular plates with edge elastic restraint", Journal of Engineering Mechanics, ASCE, 122(2), 181-182. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:2(181)
- Wang, C.M. and Alwis, W.A.M. (1995), "Simply supported Mindlin plate deflections using Kirchhoff plates", Journal of Engineering Mechanics, ASCE, 121(12), 1383-1385. https://doi.org/10.1061/(ASCE)0733-9399(1995)121:12(1383)
- Wang, C.M. and Lee, K.H. (1996), "Deflection and stress resultants of axisymmetric Mindlin plates in terms of corresponding Kirchhoff solutions", International Journal of Mechanical Sciences, 38(11), 1179-1185. https://doi.org/10.1016/0020-7403(96)00019-7
- Wang, C.M. (1997), "Relationships between Mindlin and Kirchhoff bending solutions for tapered circular and annular plates", Engineering Structures, 19(3), 255-258. https://doi.org/10.1016/S0141-0296(96)00080-6
- Wang, C.M., Kitipornchai, S. and Xiang, Y. (1997), "Relationships between buckling loads of Kirchhoff, Mindlin and Reddy polygonal plates on Pasternak foundation", Journal of Engineering Mechanics, ASCE, 123(11), 1134-1137. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:11(1134)
- Wang, C.M. and Lim, G.T. (1999), "Bending solutions of sectorial Mindlin plates from Kirchhoff plates", Journal of Engineering Mechanics, ASCE, 126(4), 367-372.
- Wang, C.M. and Xiang, Y. (1999), "Deducing buckling loads of sectorial Mindlin plates from Kirchhoff plates", Journal of Engineering Mechanics, ASCE, 125(5), 596-598. https://doi.org/10.1061/(ASCE)0733-9399(1999)125:5(596)
- Wang, C.M., Lim, G.T. and Lee, K.H. (1999), "Relationships between Kirchhoff and Mindlin bending solutions for Levy plates", Trans. ASME, Journal of Applied Mechanics, 66(2), 541-545. https://doi.org/10.1115/1.2791081
- Woinowsky-Krieger, W. (1933), "Berechnung der ringsum frei aufliegenden gleihseitigen dreiecksplatte", Ing. Archiv., 4, 254-262. https://doi.org/10.1007/BF02149076
Cited by
- Hygrothermal bending analysis of a sector-shaped annular plate with variable radial thickness vol.113, 2014, https://doi.org/10.1016/j.compstruct.2014.03.044
- An analytical approach for bending and stress analysis of cross/angle-ply laminated composite plates under arbitrary non-uniform loads and elastic foundations vol.16, pp.2, 2016, https://doi.org/10.1016/j.acme.2015.11.001
- Kinematics effect on honeycomb sandwich beams vibration vol.18, pp.3, 2017, https://doi.org/10.1051/meca/2016039
- Exact mixed-classical solutions for the bending analysis of shear deformable rectangular plates vol.27, pp.7, 2003, https://doi.org/10.1016/S0307-904X(03)00046-5
- Natural frequency analysis of a sandwich panel with soft core based on a refined shear deformation model vol.72, pp.3, 2006, https://doi.org/10.1016/j.compstruct.2005.01.006
- VIBRATION AND STABILITY OF PLATES USING HYBRID-TREFFTZ ELEMENTS vol.04, pp.04, 2004, https://doi.org/10.1142/S0219455404001380
- Effect of Soft Honeycomb Core on Flexural Vibration of Sandwich Panel using Low Order and High Order Shear Deformation Models vol.9, pp.1, 2007, https://doi.org/10.1177/1099636207070588
- Exact Relationships between Classical and Sinusoidal Theories for FGM Plates vol.19, pp.7, 2012, https://doi.org/10.1080/15376494.2011.563408
- The limitations on applying classical thin plate theory to thin annular plates clamped on the inner boundary vol.2, pp.4, 2012, https://doi.org/10.1063/1.4757928