DOI QR코드

DOI QR Code

Modeling and simulation of partially delaminated composite beams

  • Mahieddine, A. (Energy and smart systems laboratory, Khemis Miliana University) ;
  • Ouali, M. (Structures laboratory, Saad Dahleb University) ;
  • Mazouz, A. (Energy and smart systems laboratory, Khemis Miliana University)
  • Received : 2014.04.24
  • Accepted : 2014.11.07
  • Published : 2015.05.25

Abstract

A finite-element model for beams with partially delaminated layers is used to investigate their behavior. In this formulation account is taken of lateral strains and the first-order shear deformation theory is used. Both displacement continuity and force equilibrium conditions are imposed between the regions with and without delamination. Numerical results of the present model are presented and its performance is evaluated for static and dynamic problems.

Keywords

References

  1. Benzerga, D., Haddi, A. and Lavie, A. (2012), "Effect of natural load on delamination behaviour of a new hybrid woven composite", Mechanika, 18(5), 503-507.
  2. Brandt, F. (1998), "New load introduction concept for improved and simplified delamination beam testing", Exp. Tech., 22(1), 17-20. https://doi.org/10.1111/j.1747-1567.1998.tb00582.x
  3. Corigliano, A., Mariani, S. and Pandolfi, A. (2006), "Numerical analysis of rate-dependent dynamic composite delamination", Compos. Sci. Technol., 66(6), 766-775. https://doi.org/10.1016/j.compscitech.2004.12.031
  4. Coronado, P., Arguelles, A., Vina, J., Mollon, V. and Vina, I. (2012), "Influence of temperature on a carbon-fibre epoxy composite subjected to static and fatigue loading under mode-I delamination", Int. J. Solid. Struct., 49(21), 2934-2940. https://doi.org/10.1016/j.ijsolstr.2012.05.018
  5. Gorkem, S.G. and Husem, M. (2013), "Ultimate behavior of composite beams with shallow I-sections", Steel Compos. Struct., Int. J., 14(5), 493-509. https://doi.org/10.12989/scs.2013.14.5.493
  6. Greco, F. and Lonetti, P. (2009), "Mixed mode dynamic delamination in fiber reinforced composites", Compos. Part B: Eng., 40(5), 379-392. https://doi.org/10.1016/j.compositesb.2009.03.003
  7. Hamed, M.A., Nosier, A. and Farrahi, G.H. (2006), "Separation of delamination modes in composite beam with symmetric delaminations", Mater. Des., 27(10), 900-910. https://doi.org/10.1016/j.matdes.2005.03.006
  8. Kim, S.H., Chattopadhyay, A. and Ghoshal, A. (2003), "Characterization of delamination effect on composite laminates using a new generalized layerwise approach", Comput. Struct., 81(15), 1555-1566. https://doi.org/10.1016/S0045-7949(03)00150-0
  9. Lee, S., Park, T. and Voyiadjis, G.Z. (2002), "Free vibration analysis of axially compressed laminated composite beam-columns with multiple delaminations", Compos. Part B, 33, 605-617. https://doi.org/10.1016/S1359-8368(02)00068-9
  10. Mahieddine, A., Pouget, J. and Ouali, M. (2010), "Modeling and analysis of delaminated beams with integrated piezoelectric actuators", Comptes Rendus Mecanique, 338(5), 283-289. https://doi.org/10.1016/j.crme.2010.03.003
  11. Prokic, A., Lukic, D. and Ladjinovic, Dj. (2014), "Automatic analysis of thin-walled laminated composite sections", Steel Compos. Struct., Int. J., 16(3), 233-252. https://doi.org/10.12989/scs.2014.16.3.233
  12. Renart, J., Blanco, N., Pajares, E., Costa, J., Lazcano, S. and Santacruz, G. (2011), "Side Clamped Beam (SCB) hinge system for delamination tests in beam-type composite specimens", Compos. Sci. Technol., 71(8), 1023-1029. https://doi.org/10.1016/j.compscitech.2010.10.005
  13. Sjogren, A. and Asp, L.E. (2002), "Effects of temperature on delamination growth in a carbon/epoxy composite under fatigue loading", Int. J. Fatigue, 24(2-4), 179-184. https://doi.org/10.1016/S0142-1123(01)00071-8
  14. Zhang, J., Peng, L., Zhao, L. and Fei, B. (2012), "Fatigue delamination growth rates and thresholds of composite laminates under mixed mode loading", Int. J. Fatigue, 40, 7-15. https://doi.org/10.1016/j.ijfatigue.2012.01.008
  15. Zhao, L., Gong, Y., Qin, T., Mehmood, S. and Zhang, J. (2013), "Failure prediction of out-of-plane woven composite joints using cohesive element", Compos. Struct, 106, 407-416. https://doi.org/10.1016/j.compstruct.2013.06.017

Cited by

  1. Ultimate strength estimation of composite plates under combined in-plane and lateral pressure loads using two different numerical methods vol.29, pp.6, 2018, https://doi.org/10.12989/scs.2018.29.6.785
  2. Mode-I fracture toughness of carbon fiber/epoxy composites interleaved by aramid nonwoven veils vol.31, pp.2, 2015, https://doi.org/10.12989/scs.2019.31.2.113
  3. Numerical modeling and prediction of adhesion failure of adhesively bonded composite T-Joint structure vol.74, pp.6, 2020, https://doi.org/10.12989/sem.2020.74.6.723
  4. Analysis of the machinability of GFRE composites in drilling processes vol.36, pp.4, 2015, https://doi.org/10.12989/scs.2020.36.4.417