Browse > Article
http://dx.doi.org/10.12989/sem.2018.68.3.313

Thermally induced mechanical analysis of temperature-dependent FG-CNTRC conical shells  

Torabi, Jalal (Department of Mechanical Engineering, University of Guilan)
Ansari, Reza (Department of Mechanical Engineering, University of Guilan)
Publication Information
Structural Engineering and Mechanics / v.68, no.3, 2018 , pp. 313-323 More about this Journal
Abstract
A numerical study is performed to investigate the impacts of thermal loading on the vibration and buckling of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) conical shells. Thermo-mechanical properties of constituents are considered to be temperature-dependent. Considering the shear deformation theory, the energy functional is derived, and applying the variational differential quadrature (VDQ) method, the mass and stiffness matrices are obtained. The shear correction factors are accurately calculated by matching the shear strain energy obtained from an exact three-dimensional distribution of the transverse shear stresses and shear strain energy related to the first-order shear deformation theory. Numerical results reveal that considering temperature-dependent material properties plays an important role in predicting the thermally induced vibration of FG-CNTRC conical shells, and neglecting this effect leads to considerable overestimation of the stiffness of the structure.
Keywords
FG-CNTRC conical shells; vibration and buckling; variational formulation; thermal loading;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Akbari, M., Kiani, Y. and Eslami, M.R. (2015), "Thermal buckling of temperature-dependent FGM conical shells with arbitrary edge supports", Acta Mech., 226(3), 897-915.   DOI
2 Akgoz, B. and Civalek, O. (2013), "Buckling analysis of linearly tapered micro-columns based on strain gradient elasticity", Struct. Eng. Mech., 48(2), 195-205.   DOI
3 Raminnea, M., Biglari, H. and Tahami, F.V. (2016), "Nonlinear higher order Reddy theory for temperature-dependent vibration and instability of embedded functionally graded pipes conveying fluid-nanoparticle mixture", Struct. Eng. Mech., 59(1), 153-186.   DOI
4 Shen, H.S. (2009), "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos. Struct., 91(1), 9-19.   DOI
5 Shen, H.S. and Xiang, Y. (2015), "Thermal postbuckling of nanotube-reinforced composite cylindrical panels resting on elastic foundations", Compos. Struct., 123, 383-392.   DOI
6 Shen, H.S. (2012), "Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite cylindrical shells", Compos. Part B: Eng., 43(3), 1030-1038.   DOI
7 Shen, H.S. and Xiang, Y. (2012), "Nonlinear vibration of nanotube-reinforced composite cylindrical shells in thermal environments", Comput. Meth. Appl. Mech. Eng., 213, 196-205.
8 Shen, H.S. and Xiang, Y. (2014), "Nonlinear vibration of nanotube-reinforced composite cylindrical panels resting on elastic foundations in thermal environments", Compos. Struct., 111, 291-300.
9 Shen, H.S. and Zhang, C.L. (2010), "Thermal buckling and postbuckling behavior of functionally graded carbon nanotubereinforced composite plates", Mater. Des., 31(7), 3403-3411.   DOI
10 Shojaei, M.F. and Ansari, R. (2017), "Variational differential quadrature: A technique to simplify numerical analysis of structures", Appl. Math. Modell., 49, 705-738.   DOI
11 Sofiyev, A.H., Keskin, E.M., Erdem, H. and Zerin, Z. (2003), "Buckling of an orthotropic cylindrical thin shell with continuously varying thickness under a dynamic loading", Ind. J. Eng. Mater. Sci., 10, 365-370.
12 Baltacioglu, A.K., Civalek, O., Akgoz, B. and Demir, F. (2011), "Large deflection analysis of laminated composite plates resting on nonlinear elastic foundations by the method of discrete singular convolution", Int. J. Press. Vess. Pip., 88(8-9), 290-300.   DOI
13 Ansari, R. and Torabi, J. (2016), "Numerical study on the buckling and vibration of functionally graded carbon nanotube-reinforced composite conical shells under axial loading", Compos. Part B: Eng., 95, 196-208.   DOI
14 Ansari, R., Torabi, J. and Shakouri, A.H. (2017a), "Vibration analysis of functionally graded carbon nanotube-reinforced composite elliptical plates using a numerical strategy", Aerosp. Sci. Technol., 60, 152-161.   DOI
15 Sofiyev, A. H., Zerin, Z., Allahverdiev, B.P., Hui, D., Turan, F. and Erdem, H. (2017b), "The dynamic instability of FG orthotropic conical shells within the SDT", Steel Compos. Struct., 25(5), 581-591.   DOI
16 Sofiyev, A.H., Zerin, Z. and Kuruoglu, N. (2017a), "Thermoelastic buckling of FGM conical shells under non-linear temperature rise in the framework of the shear deformation theory", Compos. Part B: Eng., 108, 279-290.   DOI
17 Ansari, R., Torabi, J. and Shojaei, M.F. (2017b), "Buckling and vibration analysis of embedded functionally graded carbon nanotube-reinforced composite annular sector plates under thermal loading", Compos. Part B: Eng., 109, 197-213.
18 Ansari, R., Torabi, J. and Shojaei, M.F. (2016), "Vibrational analysis of functionally graded carbon nanotube-reinforced composite spherical shells resting on elastic foundation using the variational differential quadrature method", Eur. J. Mech.-A/Sol., 60, 166-182.   DOI
19 Baltacioglu, A.K., Akgoz, B. and Civalek, O. (2010), "Nonlinear static response of laminated composite plates by discrete singular convolution method", Compos. Struct., 93(1), 153-161.   DOI
20 Civalek, O. (2008), "Analysis of thick rectangular plates with symmetric cross-ply laminates based on first-order shear deformation theory", J. Compos. Mater., 42(26), 2853-2867.   DOI
21 Civalek, O., Korkmaz, A. and Demir, C. (2010), "Discrete singular convolution approach for buckling analysis of rectangular Kirchhoff plates subjected to compressive loads on twoopposite edges", Adv. Eng. Softw., 41(4), 557-560.   DOI
22 Tornabene, F., Viola, E. and Inman, D.J. (2009), "2-D differential quadrature solution for vibration analysis of functionally graded conical, cylindrical shell and annular plate structures", J. Sound Vibr., 328(3), 259-290.   DOI
23 Sumfleth, J., Prehn, K., Wichmann, M.H., Wedekind, S. and Schulte, K. (2010), "A comparative study of the electrical and mechanical properties of epoxy nanocomposites reinforced by CVD-and arc-grown multi-wall carbon nanotubes", Compos. Sci. Technol., 70(1), 173-180.   DOI
24 Talebitooti, M. (2013), "Three-dimensional free vibration analysis of rotating laminated conical shells: Layerwise differential quadrature (LW-DQ) method", Arch. Appl. Mech., 83(5), 765-781.   DOI
25 Torabi, J., Kiani, Y. and Eslami, M.R. (2013), "Linear thermal buckling analysis of truncated hybrid FGM conical shells", Compos. Part B: Eng., 50, 265-272.
26 Xiang, Y., Ma, Y. F., Kitipornchai, S., Lim, C.W. and Lau, C.W.H. (2002), "Exact solutions for vibration of cylindrical shells with intermediate ring supports", Int. J. Mech. Sci., 44(9), 1907-1924.   DOI
27 Yakobson, B.I. and Avouris, P. (2001), Mechanical Properties of Carbon Nanotubes. In Carbon Nanotubes (pp. 287-327), Springer, Berlin, Heidelberg, Germany.
28 Yang, J., Ke, L.L. and Feng, C. (2015), "Dynamic buckling of thermo-electro-mechanically loaded FG-CNTRC beams", Int. J. Struct. Stab. Dyn., 15(8), 1540017.
29 Zhang, L.W., Song, Z.G. and Liew, K.M. (2016), "Computation of aerothermoelastic properties and active flutter control of CNT reinforced functionally graded composite panels in supersonic airflow", Comput. Meth. Appl. Mech. Eng., 300, 427-441.   DOI
30 Yas, M.H., Pourasghar, A., Kamarian, S. and Heshmati, M. (2013), "Three-dimensional free vibration analysis of functionally graded nanocomposite cylindrical panels reinforced by carbon nanotube", Mater. Des., 49, 583-590.   DOI
31 Hosseini, S.M. (2013), "Application of a hybrid mesh-free method based on generalized finite difference (GFD) method for natural frequency analysis of functionally graded nanocomposite cylinders reinforced by carbon nanotubes", CMES-Comput. Model Eng. Sci., 95, 1-29.
32 Fiedler, B., Gojny, F.H., Wichmann, M.H., Nolte, M.C. and Schulte, K. (2006), "Fundamental aspects of nano-reinforced composites", Compos. Sci. Technol., 66(16), 3115-3125.   DOI
33 Gurses, M., Akgoz, B. and Civalek, O. (2012), "Mathematical modeling of vibration problem of nano-sized annular sector plates using the nonlocal continuum theory via eight-node discrete singular convolution transformation", Appl. Math. Comput., 219(6), 3226-3240.   DOI
34 Gurses, M., Civalek, O., Korkmaz, A.K. and Ersoy, H. (2009), "Free vibration analysis of symmetric laminated skew plates by discrete singular convolution technique based on first-order shear deformation theory", Int. J. Numer. Meth. Eng., 79(3), 290-313.   DOI
35 Heydarpour, Y., Aghdam, M.M. and Malekzadeh, P. (2014), "Free vibration analysis of rotating functionally graded carbon nanotube-reinforced composite truncated conical shells", Compos. Struct., 117, 187-200.   DOI
36 Ho, Y.H., Chang, C.P., Shyu, F.L., Chen, R.B., Chen, S.C. and Lin, M.F. (2004), "Electronic and optical properties of double-walled armchair carbon nanotubes", Carb., 42(15), 3159-3167.   DOI
37 Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nat., 354(6348), 56.   DOI
38 Jin, G., Ye, T., Ma, X., Chen, Y., Su, Z. and Xie, X. (2013), "A unified approach for the vibration analysis of moderately thick composite laminated cylindrical shells with arbitrary boundary conditions", Int. J. Mech. Sci., 75, 357-376.   DOI
39 Esawi, A.M. and Farag, M.M. (2007), "Carbon nanotube reinforced composites: Potential and current challenges", Mater. Des., 28(9), 2394-2401.   DOI
40 Kiani, Y. (2016), "Free vibration of functionally graded carbon nanotube reinforced composite plates integrated with piezoelectric layers", Comput. Math. Appl., 72(9), 2433-2449.   DOI
41 Kiani, Y. (2018), "Torsional vibration of functionally graded carbon nanotube reinforced conical shells", Sci. Eng. Compos. Mater., 25(1), 41-52.   DOI
42 Lam, D.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Sol., 51(8), 1477-1508.   DOI
43 Liew, K.M., He, X.Q., Tan, M.J. and Lim, H.K. (2004), "Dynamic analysis of laminated composite plates with piezoelectric sensor/actuator patches using the FSDT mesh-free method", Int. J. Mech. Sci., 46(3), 411-431.   DOI
44 Manchado, M.L., Valentini, L., Biagiotti, J. and Kenny, J.M. (2005), "Thermal and mechanical properties of single-walled carbon nanotubes-polypropylene composites prepared by melt processing", Carb., 43(7), 1499-1505.   DOI
45 Mehrabadi, S.J. and Aragh, B.S. (2014), "Stress analysis of functionally graded open cylindrical shell reinforced by agglomerated carbon nanotubes", Thin-Wall. Struct., 80, 130-141.   DOI
46 Mirzaei, M. and Kiani, Y. (2015), "Thermal buckling of temperature dependent FG-CNT reinforced composite conical shells", Aerosp. Sci. Technol., 47, 42-53.
47 Onate, E. (2013), Structural Analysis with the Finite Element Method. Linear Statics: Volume 2: Beams, Plates and Shells, Springer Science and Business Media.
48 Mohammadimehr, M. and Alimirzaei, S. (2016), "Nonlinear static and vibration analysis of Euler-Bernoulli composite beam model reinforced by FG-SWCNT with initial geometrical imperfection using FEM", Struct. Eng. Mech., 59(3), 431-454.   DOI