• Title/Summary/Keyword: finite population sampling

Search Result 36, Processing Time 0.017 seconds

Robust Bayesian Analysis in Finite Population Sampling with Auxiliary Information

  • Lee, Seung-A;Suh, Sang-Hyuck;Kim, Dal-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.4
    • /
    • pp.1309-1317
    • /
    • 2006
  • The paper considers some Bayes estimators of the finite population mean with auxiliary information under priors which are scale mixtures of normal, and thus have tail heavier than that of the normal. The proposed estimators are quite robust in general. Numerical methods of finding Bayes estimators under these heavy tailed priors are given, and are illustrated with an actual example.

  • PDF

Robust Bayes and Empirical Bayes Analysis in Finite Population Sampling with Auxiliary Information

  • Kim, Dal-Ho
    • Journal of the Korean Statistical Society
    • /
    • v.27 no.3
    • /
    • pp.331-348
    • /
    • 1998
  • In this paper, we have proposed some robust Bayes estimators using ML-II priors as well as certain empirical Bayes estimators in estimating the finite population mean in the presence of auxiliary information. These estimators are compared with the classical ratio estimator and a subjective Bayes estimator utilizing the auxiliary information in terms of "posterior robustness" and "procedure robustness" Also, we have addressed the issue of choice of sampling design from a robust Bayesian viewpoint.

  • PDF

Ratio and Product Type Exponential Estimators of Population Mean in Double Sampling for Stratification

  • Tailor, Rajesh;Chouhan, Sunil;Kim, Jong-Min
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • This paper discusses the problem of estimation of finite population mean in double sampling for stratification. In fact, ratio and product type exponential estimators of population mean are proposed in double sampling for stratification. The biases and mean squared errors of proposed estimators are obtained upto the first degree of approximation. The proposed estimators have been compared with usual unbiased estimator, ratio and product estimators in double sampling for stratification. To judge the performance of the proposed estimators an empirical study has been carried out.

Generalized Ratio-Cum-Product Type Estimator of Finite Population Mean in Double Sampling for Stratification

  • Tailor, Rajesh;Lone, Hilal A.;Pandey, Rajiv
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.3
    • /
    • pp.255-264
    • /
    • 2015
  • This paper addressed the problem of estimation of finite population mean in double sampling for stratification. This paper proposed a generalized ratio-cum-product type estimator of population mean. The bias and mean square error of the proposed estimator has been obtained upto the first degree of approximation. A particular member of the proposed generalized estimator was identified and studied from a comparison point of view. It is observed that the identified particular estimator is more efficient than usual unbiased estimator and Ige and Tripathi (1987) estimators. An empirical study was conducted in support of the theoretical findings.

A Generalized Ratio-cum-Product Estimator of Finite Population Mean in Stratified Random Sampling

  • Tailor, Rajesh;Sharma, Balkishan;Kim, Jong-Min
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.1
    • /
    • pp.111-118
    • /
    • 2011
  • This paper suggests a ratio-cum product estimator of a finite population mean using information on the coefficient of variation and the fcoefficient of kurtosis of auxiliary variate in stratified random sampling. Bias and MSE expressions of the suggested estimator are derived up to the first degree of approximation. The suggested estimator has been compared with the combined ratio estimator and several other estimators considered by Kadilar and Cingi (2003). In addition, an empirical study is also provided in support of theoretical findings.

Efficient Use of Auxiliary Variables in Estimating Finite Population Variance in Two-Phase Sampling

  • Singh, Housila P.;Singh, Sarjinder;Kim, Jong-Min
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.2
    • /
    • pp.165-181
    • /
    • 2010
  • This paper presents some chain ratio-type estimators for estimating finite population variance using two auxiliary variables in two phase sampling set up. The expressions for biases and mean squared errors of the suggested c1asses of estimators are given. Asymptotic optimum estimators(AOE's) in each class are identified with their approximate mean squared error formulae. The theoretical and empirical properties of the suggested classes of estimators are investigated. In the simulation study, we took a real dataset related to pulmonary disease available on the CD with the book by Rosner, (2005).

A Study of Circular Sampling in Finite Population

  • Hae-Yong Lee
    • Communications for Statistical Applications and Methods
    • /
    • v.3 no.3
    • /
    • pp.161-168
    • /
    • 1996
  • This paper describes a sampling method, which can be used instead of the simple random sampling without replacement(SRSWOR). This method, circular sampling, assumes that the sampling units of the population are arranged in circular format, and randomly selects as many as samples of contiguous units. Therefore this method gathers information quicker and easier than STSWOR. In certain circumstances, the reliability of this method is better than that of STSWOR. And of circular sampling would be applied to nonprobability could be determined. methods, the reliability of the sample results in terms of probability could be determined.

  • PDF

A Bayesian Approach to Finite Population Sampling Using the Concept of Pivotal Quantity

  • Hwang, Hyungtae
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.3
    • /
    • pp.647-654
    • /
    • 2003
  • Bayesian probability models for finite populations are considered assuming so-called the super-population. We find the posterior distribution of population mean by a new approach, using the concept of pivotal quantity for the small sample case. A large sample theory is also treated throught the concept of asymptotically pivotal quantity.

Finite Population Total Estimation On Multistage Cluster Sampling

  • Geun-Shik Han;Yong-Chul Kim;Kiheon Choi
    • Communications for Statistical Applications and Methods
    • /
    • v.3 no.2
    • /
    • pp.161-168
    • /
    • 1996
  • Multistage hierarchical models and Bayesian inferences about finite population total estimations are considered. Here, Gibbs sampling approach that can be used to predict the marginal posterior means needed for Bayesian inferences is proposed.

  • PDF

Confidence Intervals for a Proportion in Finite Population Sampling

  • Lee, Seung-Chun
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.3
    • /
    • pp.501-509
    • /
    • 2009
  • Recently the interval estimation of binomial proportions is revisited in various literatures. This is mainly due to the erratic behavior of the coverage probability of the well-known Wald confidence interval. Various alternatives have been proposed. Among them, the Agresti-Coull confidence interval, the Wilson confidence interval and the Bayes confidence interval resulting from the noninformative Jefferys prior were recommended by Brown et al. (2001). However, unlike the binomial distribution case, little is known about the properties of the confidence intervals in finite population sampling. In this note, the property of confidence intervals is investigated in anile population sampling.