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Robust Bayes and Empirical Bayes Analysis
in Finite Population Sampling
with Auxiliary Information'

Dal Ho Kim!

ABSTRACT

In this paper, we have proposed some robust Bayes estimators using
ML-II priors as well as certain empirical Bayes estimators in estimating
the finite population mean in the presence of auxiliary information. These
estimators are compared with the classical ratio estimator and a subjective
Bayes estimator utilizing the auxiliary information in terms of “posterior
robustness” and “procedure robustness”. Also, we have addressed the issue
of choice of sampling design from a robust Bayesian viewpoint.
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1. INTRODUCTION

We consider a finite population ¢/ with units labeled 1,2,... , N. Let y; denote
the value of a single characteristic attached to the unit ¢ (¢ = 1,2,... ,N). The
vector y = (y1,--- ,yn) 7 is the unknown state of nature, and is assumed to belong
to ® = RN. A subset s of {1,2,... ,N} is called a sample. Let n(s) denote the
number of elements belonging to s. The set of all possible samples is denoted
by S. A design is a function p on S such that p(s) € [0,1] for all s € § and
YecsP(s) =1. Given y € © and s = {i1, -+ ,iny} With 1 <4y <0 iy <
N, let y(s) = {Yiy, "+ 1Ying,}- One of the main objectives in sample surveys is
to draw inference about y or some function (real- or vector-valued) v(y) of y on
the basis of s and y(s). In this article, we will be concerned exclusively with
y(y) = N1 Zf\; 1 ¥i, the finite population mean, although the general methods
to be described later are applicable to other parameters of interest as well.

tThis paper was supported by Kyungpook National University Research Fund, 1997.
!Department of Statistics, Kyungpook National University, Taegu, 702-701, Korea.
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In many sample surveys, for every unit 1 in the finite population, information
is available for one or more auxiliary characteristics, characteristics other than
the one of direct interest. For example, if the characteristic of direct interest is the
yield of a particular crop, the auxiliary characteristic could be the area devoted
that crop by different farms in the list. We consider the simplest situation when
for every unit 7 in the population, value of a certain auxiliary characteristic, say
zi(> 0) is known (1 = 1,2,... ,N).

One time-honored estimator of the finite population mean in this situation is
the classical ratio estimator which seems to incorporate the auxiliary information
in a very natural manner. Moreover, this estimator can be justified both from
the model and design based approach. While Cochran (1977) provides many
design-based properties of the ratio estimator, Royall (1970, 1971) justifies this
estimator based on certain superpopulation models.

In model-based inference approach for such problems, the finite population
was viewed as a sample from a superpopulation. From a Bayesian perspective,
this amounts to putting a prior distribution on y. A unified and elegant formu-
lation of Bayes estimation in finite population sampling was given by Ericson
(1969). Since then, there are many papers in the area of Bayes estimation in
finite population sampling.

Most of the Bayesian literature in survey sampling deals with subjective
Bayesian analysis in that the inference procedure is based on a single completely
specified prior distribution. The subjective Bayesian approach has frequently
criticized on the ground that it presumes an ability to completely and accurately
quantify subjective information in terms of a single prior distribution. We shall
see in Section 3 that failure to specify accurately one or more of the parameters
of a prior distribution has a serious consequence when calculating the Bayes risk
and often protection is needed against the possibility of such occurrence.

A robust Bayesian viewpoint assumes that subjective information can be
quantified only in terms of a class I' of possible distributions. Inferences and
decisions should be relatively insensitive to deviations as the prior distribution
varies over I'. The robust Bayesian idea can be traced back to Good as early as
in 1950 (see for example Good (1965)), and the topic has enjoyed wide popularity
in recent years sparked by the stimulating article of Berger (1984).

The need for robust Bayesian analysis in survey sampling has also been felt
by some authors. Godambe and Thompson (1971) adapted a framework whereby
the prior information could only be quantified up to a class of prior distributions.
For estimating the population total in the presence of auxiliary information, they
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came up with the usual ratio and difference estimators, justifying these on the
ground of location invariance. The model assumption there played a very minimal
role, and the main idea was that model-based inference statements could be
replaced in the case of model-failure by design-based inference. In a later study,
Godambe (1982) considered more common phenomenon of specific departures
from the assumed model. Royall and Pfefferman (1982) have addressed a different
robustness issue. Their main concern is to find out conditions under which the
Bayes estimators under the assumed model remain the same under departures
from the model.

The preéent article considers an e-contamination class of priors following the
lines of Berger and Berliner (1986). In Section 2, we develop some robust Bayes
(RB) estimators employing ML-II priors as well as certain empirical Bayes (EB)
estimators of the finite population mean when certain auxiliary information is
present. In Section 3, we provide analytic expressions for the indices of poste-
rior and procedure robustness (cf Berger (1984)) of the proposed RB and EB
estimators, and compare these indices with similar indices for the classical ratio
estimator as well as the subjective Bayes estimator. We have proved the asymp-
totic optimality in the sense of Robbins (1955) of the RB and EB estimators.
In Section 4, the issue of choice of sampling designs is addressed from a robust
Bayesian viewpoint. In Section 5, a numerical example is provided to illustrate
the results of the preceding section.

For simplicity, we shall assume that n(s) # n = p(s) = 0, that is, we effec-
tively consider only samples of fixed size n. Also, for notational simplicity, we
shall, henceforth, assume that s = {i1,--- ,i,} where 1 <4; <--- <14, < N. Let
5=1{1,2,... ,N} —s={j1, ,jN-n} (say), where 1 < j; < --- < jn_n < N.
We shall write y(s) = (yi;, - ayin)T7 y(§) = (yjl 1T ’yjN-n)T' Also, throughout
the loss is assumed to be squared error.

2. ROBUST BAYES AND EMPIRICAL BAYES ESTIMATORS

We consider the superpopulation model y; = fz; + (i =1,2,--- ,N), where
B,e1,- - ,en are independently distributed with 8 ~ N(By,08) and €1, - - - ,en are
iid N(0, 72h(z;)) for any positive valued function h. Let z = (z1,%2, -+ ,zn)7,
z(s) the column vector with elements equal to z;(i € s) arranged in ascending
order of suffixes, i.e., if s = (41, ,%,) With 1 < 1) < i3 < ---,iy < N, z(s) =
(zsy,- -+ ,%i,)T; similarly z(5) is the column vector with its elements equal to
z;(i € 5) arranged in ascending order of the suffixes. Further, let D = D(z) =
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Diag(h(z1), - ,h(zn)), D(s) is a diagonal matrix with its elements equal to
h(z;)(i € s) arranged in ascending order of suffixes, i.e., if s = (iy,--- ,4,) with
1 <4 <idp <. ,iyp <N, D(s) = Diag(h{z;,), -+ ,h(z;,)). Similarly, D(3)
is a diagonal matrix with elements equal to h(z;)(¢ € 5) arranged in ascending
order of suffixes. The following theorem gives the distribution of y(s), and the
conditional distribution of y(3) given (s,y(s)) under the assumed model.

Theorem 2.1. Under the assumed model,

(i) marginally y(s) ~ Nfox(s), 72D(s) + o3z (s)a7 (5)];
(i) the conditional distribution of y(3) given s, y(s) is

Bor? + 03 EiES yii/h(z:) o ajz(5)z7(5)
V|2 TE0(6), 7D(E) + e )
TS+ 4] Zzes z/ (Ii) T4+ ag Eies ; /h(m,)
The proof of the theorem is postponed to the Appendix It follows from this
theorem that the Bayes estimator of y(y IS yiis

_ - _ 607-2 + 03 zz gyzmz/h(xz)
ol o)) = N™!ng(e) + S e S el ()

The case h(z;) = z; (¢ = 1,--- ,N) is of particular interest. In this case
writing Z(s) = n~!' Y. @, Z(5) = (N n) 1Y s @iy Mo = 72 /03, and By(s) =
My/(My + nZ(s)), the subjective Bayes estimator ey reduces to

eo(s,y(s)) = f4(s) + (1 = /)Z(5){(1 ~ Bo(s))5(s)/Z(s) + Bo(s)Bo}  (2.2)

where f =n/N and §(s) =n~' 3, vi.

The classical ratio estimator can be obtained as a limiting Bayes estima-
tor from (2.2) by making 03 — co. An alternative approach to derive the
ratio estimator (as mentioned in Royall and Pfefferman (1982)) is to assume
the model that conditional on 8,y;, - ,yn are independently distributed with
yi ~ N(Bz;, T2x;), while § is uniform (—oo, 00).

In the remainder of this section, we take h(z;) = z; (i = 1,--- ,N). In this
case the classical ratio estimator is glven by er(s,y(s)) = (g(s)/Z(s))z, where

1ZL— Li-

To derive the robust Bayes estimator of v(y), we consider e-contaminated
priors. Specifically, let the prior distribution of 8 be the same as that of 7 =
(1 — &)mp + eq, where ¢ € [0,1) is known, mg is the N(Bp, 02) distribution, and
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q € Q, the class of all possible distributions. Then the marginal pdf of y(s) under
the prior 7 is given by

m(y(s)im) = (1 - e)m(y(s)Imo) + em(y(s)lq), (2-3)

where m(y(s)|mo) denotes the pdf of N(fBoz(s), 72D(s) + o2z (s)zT (s)), while

miy(s)lg) = [ e H(Tor ) expl- gy Y0 = B /aidald). (29)

i€s €S

Now we find the ML-II prior within the gwen class of priors. Since 7, (i —
Bz;)%/z; is minimized with respect to 8 at B, = §(s s)/Z(s), from (2. 3) and (2.4),
the ML-II prior which maximizes the marginal likelihood m(y(s) |7) with respect
to g € @ is given by

TuL(B) = (1 - e)mo(B) + €5 (), (2.5)
where §,(3) is degenerate at 8 = f3;. Then we have the following theorem.
Theorem 2.2. Under the ML-II prior T, marginally

y(s) ~ (1 — €)NBox(s), 72D(s) + oiz(s)zT (s)] + eF

where Fy has the (improper) pdf

fow(s) = @rry ™A ([[ 27 %) expl= > (wi — Bowi)?/(27%2:)).

1€S €S

Also, the conditional distribution of y(3) given (s,y(s)) is

TarL(y(3)s, y(s))

= R o)W (@ - Boe)Ta(s) + Boo ) 206172 ((9) + 2 )]
+ (1= Rarn @) M) 2(6))2(5), 7 D(3) 26)
where for 0 < e < 1,
N ()

= 1+e(1— ) B} ¥ (s) expnBo(s)(@(s) — Boz(s))2/ (2772 (s))).
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The proof of this theorem involves some heavy algebra, and is postponed to
the Appendix. It follows from this theorem that the robust Bayes estimator of
v(y) under the ML-II prior sy, simplifies to

er(s,4(s)) = fi(s)+ (1~ F)ZE{( - Xz (§(s))Bo(s)di(s)/Z(s)
A (5(s)) Bo(s)Bo}- (2.7)

We now turn to the empirical Bayes analysis. The empirical Bayes analysis
is closely related to the robust Bayes analysis in the sense that in the former
analysis, the prior distribution is assumed to belong to some class of distributions.
Contrary to the robust Bayes anaysis where ¢ is typically taken to be very small,
in an empirical Bayes analysis ¢ is taken as 1. This point is very clearly brought
out in Berger and Berliner (1984).

To derive an empirical Bayes estimator, we consider the model given in the ro-
bust Bayes analysis with € = 1, but assume that Q is the class of {N(8, 0?),02 >
0} priors. Observe that if 3 has the N (8, 0?) prior, then calculations similar to
(2.2) lead to the Bayes estimator

es(s,y(s)) = fi(s) + (1 - ))z(5){(1 - B(s))y(s)/z(s) + B(s)Bo}  (2.8)

of ¥(y). In the above B(s) = M/(M + nZ(s)) and M = 72/0?%. In an empirical
Bayes analysis, we estimate B(s) from the marginal distribution of %(s) We may
note that marginally §(s) is suﬂicxent for 02 and §(s) ~ N[BoZ(s) T—ﬂﬂ] Hence,

’ nB(s) 1"
E[n(g(s) — Boz(s))?/(12%(s))] = B~Y(s). Thus, B(s ) is estimated by
: T2%(s) }
B . 2.9
)= mm{ "TG) — oI (29)
Accordingly, an empirical Bayes estimator of y(y) is given by

een(s,y(5)) = f4(s) + (1 = HZE{(L ~ B(s))5(s)/2(s) + B(s)bo}.  (2.10)

In practice, however, 72

is not usually known. In such situations, one can
conceive of an inverse gamma prior for 72 independent of the prior for 3 to
derive a Bayes estimator of y(y). In a robust Bayes approach, if one assumes a
mixture of a normal-gamma, prior for (3,0?), then the ML-II prior puts its mass
on the point (§(s)/Z(s),n ™' ¥ e, (Wi — 2:(s)/Z(s))?/z:). In an empirical Bayes
approach, one estimate 72/B(s) by MSB = n(§(s) — foZ(s))%/Z(s), and 72 by
MSW = 3=, {(yi — 7(s)/Z(s)x;)?/z;}/(n — 1). The latter can be justified on the
ground that 3., (yi — §(s)/Z(s)zi)?/zi ~ 72x2_; so that E[MSW] = 2. Hence,
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an estimator of B(s) is given in this case by B,(s) = min{1, MSW/MSB}, and
the corresponding empirical Bayes estimator is obtained by substituting B, (s)
for B(s) in (2.10). We have not, however, pursued here the resulting Bayesian
analysis.

3. COMPARISON OF THE ESTIMATORS BASED ON
BAYESIAN ROBUSTNESS

In this section, we compare the performance of the subjective Bayes estimator
ep, the classical ratio estimator er, the robust Bayes estimator egp and the
empirical Bayes estimator egpg of y(y) from the robustness perspective. The main
idea is that we want examine whether these estimators perform satisfactorily over
a broad class of priors.

With this end, we consider the {N (8o, 02),0% > 0} class of priors. The choice
of this class of priors may be justified as follows. Very often, based on prior
elicitation, one can take a fairly accurate guess at the prior mean. However, the
same need not necessarily be true for the prior variance, where there is a greater
chance of vagueness. Note that when o2 # 03, none of the estimators eg, eg,
erB, Or epp is the optimal (Bayes) estimator. For a typical member N(B;,0?)
of this class, the Bayes estimator of y(y) is given by (2.8).

We now introduce the general definition of posterior robustness. For a given
prior &, denote by p(&, (s,y(s)),e) the posterior risk of any arbitrary estimator
e(s,y(s)) of v(y) under squared error loss. The following definition is taken from
Berger (1984).

Definition 3.1. An estimator eg(s,y(s)) of ¥(y) is {-posterior robust with re-
spect to T' if for the observed (s,y(s)),

PORr(eo) = sup |p(¢, (s,y(s)), e0) — inf p(£, (s,y(s)),a)] < ¢ (3.1)
¢el ac A

We shall, henceforth, refer to the left hand side of (3.1) as the posterior
robustness index of the estimator eg(s,y(s)) of y(y) under the class of priors I".
PORr(ep) in a sense is the sensitivity index of the estimator ey of y(y) as the
prior varies over I'. For any given ¢ > 0, it is very clear that whether or not
posterior robustness exits will often depend on which (s, y(s)) is observed. This
will be revealed in the subsequent calculations.

With this end, first note that under the N(f8y,0?) prior denoted by ¢,2, the
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posterior risk of any estimator e of ¥(y) is

p(£a27 (S,y(S)), e) = p(ﬁoﬂa (Say(s))a eB) + (6 - 63)2 (32)

where ep is given in (2.8). Using (3.1) and (3.2) one gets for the class T’ = {£,2 :
02 > 0} of priors

PORr(er) = sup (1- f)%2%(5)B%(s)[5(s)/Z(s) — Bol
0<B(s)<1
= (1- £)?3°(3)[5(s)/2(s) — Bol’; (3.3)
PORr(e)) = sup (1 - f)*z%(3)(B(s) — Bo(s))*[u(s)/Z(s) — Bo)’
0<B(s)<1
= (1 - £)22*(5) max[B§(s), (1 — Bo(s))?]
x[5(s)/Z(s) — Bol; (3.4)
PORr(ers) = sup (1 - )22 (5)(Amr(H(s)Bo(s) — B(s))?

0<B(s)<1

(1 - £)22%(5) max[X%, L, ((s)) B3 (s), (1 — Aaer.(5(s)) Bo(s))?]

x[5(s)/%(s) — Bo]’; (3.5)
PORr(egp) = 0<§(lr;<1(1—f)2 z2(5)(B(s) — B(s))*[5(s) /3 (s) — Bo]?
= (1- £)*2%(5) max[B*(s), (1 - B(s))*]
x[5(s)/%(s) — Bol*. (3.6)

Note from (3.3) - (3.6) that if we allow all possible distributions N{(3,0?),
where 3 is widely different from (B as our priors, all POR indices can become
prohibitively large because the supremum over 3 (real) becomes +oo. Hence, we
have considered the {N(f,0?),0? > 0} class of priors only. From (3.3) - (3.6),
it is clear that max[PORr(eo), PORr(ers), PORr(ees)] < PORr(er) so that
the subjective Bayes, robust Bayes and empirical Bayes estimators all achieve a
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greater degree of posterior robustness than the classical ratio estimator. However,
there is no clear winner among ey, egp and egp in terms of posterior robustness.
That is, the ratio of PORr among eg, egp and egp can take values both larger
and smaller than 1 depending on the particular (s,y(s)).

Although the Bayesian thinks conditionally on (s, y(s)), it seems quite sensible
to use the overall Bayes risk as a suitable robustness criteria, at least at a preex-
perimental stage. This issue is also addressed in Berger (1984) who introduced
also the criterion of procedure robustness. He gives the following definition.

Definition 3.2. An estimator eg(s, y(s)) of ¥(y) is said to be (-procedure robust
with respect to I if
PRF(EO) = sup IT‘(&, 60) ~ inf T‘(f, a)l < Ca (37)
ger aEA
where v denotes the Bayes risk.

We shall, henceforth, refer to PRr(eq) as the procedure robustness index of
eg. Simple calculations yield for the class I' = {£,2 : 02 > 0} of priors

PRr(er) = 0<th(11;<1(1 — [)’#(8)7%(nz(s)) "' B(s)
= (1- 5?22 (3)r*(nz(s)) (3.8)
PRr(eg,) = 0<;1(1;;<1(1 - f)2:17:2(§)7'2(n§:(s))_1(Bo(s) - B(s))T/B(s)
= +o0; (3.9)

PRr(erp) = sup (1 f)?Z2(5)E[(Bo(s)Amr(F(s)) — B(5))*(@(s)/3(s) — Bo)?]
0<B(s)<1

(3.10)

PRr(epp) = sup (1 - f)’2*(5)E[(B(s) — B(s))*(#(5)/(s) — fo)?]. (3.11)
: 0<B(s)<1

It is thus clear that the subjective Bayes estimator ey lacks procedure robustness,

while the ratio estimator eg is quite procedure robust. The procedure robustness

of epp can be examined on the basis of the following theorem.
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Theorem 3.1. E{(Bo(s)Awz(3(s)) — B(s))*(5(5)/2(s) = Bo)*] = Oe(BY*(s)),

for every € > 0, where O, denotes the ezact order.

The proof of this theorem is technical, and is deferred to the Appendix. In
view of (3.10) and Theorem 3.1. it appears that eg has distinct advantage over
erp in terms of procedure robustness, especially for small B. This is not surpris-
ing though since small B signifies small M = 72/0% which amounts to greater
instability in the assessment of the prior distribution of § relative to the super-
population model. It is not surprising that in such circumstances, it is safer
to use eg for estimating (y) if one is seriously concerned about the long-run
performance of the estimator.

To examine the procedure robustness of epp, we proceed as follows.

Theorem 3.2. E[(B(s)—B(s))2(§(s)/z(s)-B)*] = O(BY/?-1(s)), where n(0 <
n < 1/2) can be made arbitrarily small.

The proof of this theorem is also technical, and is deferred to the Appendix.
Theorem 3.1 and Theorem 3.2 clearly demonstrate the procedure robustness of
erp and egp as B(s) — 0. It follows from the above theorems that as n — oo, i.e.,
B(s) — 0, under the ¢,z prior, the robust Bayes and empirical Bayes procedures
are asymptotically optimal in the sense of Robbins (1955). '

The summary of our findings of this section is as follows. The subjective
Bayes, robust Bayes and empirical Bayes estimators are all more posterior robust
than the classical ratio estimator. However, the subjective Bayes estimator fails
miserably according to the criterion of procedure robustness, while the robust
Bayes and empirical Bayes estimators do not suffer from that drawback. The
main point is that both the robust Bayes and empirical Bayes estimators are
strong contenders of the classical as well as the subjective Bayes estimators.

4. CHOICE OF SAMPLING DESIGN

From a Bayesian point of view, one selects those units 4 for which the posterior
risk of the Bayes estimator of y(y) is minimized. Denote £y by the N (Bo, of) prior.
For the subjective Bayes estimator as given in (2.2), the posterior risk is given by

p(&o, (s,y(5)); €0)
z2

’rziL‘i(L"i
=N ZT Tt Mg+nac( ))+ Z M0+n§:(s)]’ (41
€8 i€s,ie€s

i 7
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which is minimized by selecting those units 4 in the sample for which the z; values
are the largest. Royall and Pfefferman (1982) have considered the special case of
(4.1) with My =0, i.e., when 8 has the uniform (—o0, 00) prior.

Next, we compute the posterior risk of the robust Bayes estimator under the
e-contaminated prior w. Denoting this prior by £jyy,, it follows that the posterior
risk of erp is given by

p€mr, (5,4(s)), erB)
=N Ve ilsy) + 35 Covgyy (uinyils y(s))] (42)
ies i€5,7 €5
i# 1
Generalizing the formula (1.8) given in Berger and Berliner (1983), one gets for

1€51 €5,1#7,

Vemr (yils, y(s))

N — _ 2
= o+ a2 ST Ry (G0 - Runnae))a? Be) (£ = o)
(4.3)
and
Cove,,, (vi, vils, y(s))
0 _ 2
= 7ozl I 5 50) 1 = Rurn (6ot B36) (503~ o)
(4.4)
From (4.2) - (4.4), one gets
P(fML7 (37 y(s))7 eRB) R
= N7[r? ((N — n)3(3) + (N — n)z%(3) ————A;f fr(fg()s))
— 2
RGN - RGN - 0?5306 (5 o) - (43)

)
If we want to select those units ¢ in the sample which minimize (4.5), the objective
is clearly unachievable without knowing all the y;’s along with all the z;’s. A more
sensible approach will be to minimize

r(émrL,erB) = Exp(€mr, (s,y(s)), erB)
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where the expectation is taken over the marginal distribution of y(s), when = is
the prior. Noting that

Mz (§(s)) = (1= e)my(s)lm) /{(1 - e)m(y(s)mo) + em(y(s)ld)},  (4.6)

where m(y(s)|q) denotes the marginal pdf of y(s) under the prior g, it follows
that

T(éML,€RB)
= N7222((N — n)3(3) + (N - n)?2%(5)

My + n:i'(s)]

+(1 = INN )2 B () By (1 = Raen (g(e))) L ST

It follows after some simplifications that under the prior mg, marginally §(s) ~
Py

NlpoZ(s), %%]. Accordingly, under the prior g, marginally nBy(s)[7(s) —

o (s)]?/ (7?3 (s)) ~ x}. Then

Fro [(1 ~Srn(p(sn) T ﬂofv(s))?}

z%(3)

2 1= exp(U/2)
- E| 1= U (4.8)
nZ(s)Bo(s) | p7(4) 4 1= exp(U/2) }
where U ~ x2. Hence,
r(émL.erB)
= N7272[(N - n)z(5) + (N — n)%z%( )Mol-;-_n;(s)]
) s Bols) = exp(U/2)
HA = NN =) o 3 | Gl Bee) r%;exp(Uﬂ)U]
(4.9)

Since By(s)/z(s) = My/{Z(s)(Mo+nZ(s))} is decreasing in Z(s) and By(s)Z(s) =
MoZ(s)/(Mp +nZ(s)) is increasing in Z(s), it follows from (4.9) that even from a
robust Bayesian viewpoint, one should select those units 4 for which the z; values
are the largest. This suggests some robustness in the choice of designs even in a
subjective Bayesian analysis.
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5. AN EXAMPLE

The example in this section considers one of the six real populations which
are used in Royall and Cumberland (1981) for an empirical study of the ratio
estimator and estimates of its variance. Qur population consists of the 1960
and 1970 population, in millions, of 125 US cities with 1960 population between
100,000 and 1,000,000. Here the auxiliary information is the 1960 population.

The problem is to estimate the mean (or total) number of inhabitants in
those 125 cities in 1970. For the complete population in 1970, we find that
the population mean is 0.29034. We select 20% simple random sample without
replacement from this population. So the sample size is n=25. Also, we are
using 02 = (N —1)7! Zf;l(yi — Bz;)? = 4.84844x 103 which is assumed to be
known. We can obtain easily the ratio estimate. To do a Bayesian analysis, we
use both 1950 and 1960 populations in 125 cities to elicit the base prior mg for
B. The elicited prior 7y is the N(1.15932, 1.21097x1073) distribution based on
prior information. Under this elicited prior mg, we use formulas (2.2) to obtain
the subjective Bayes estimate. But we have some uncertainty in 7y and the
prior information, so we choose € = .1 and we get the robust Bayes estimate
using formula (2.7). Also we can obtain easily the empirical Bayes estimate. A
number of samples are tried and we have reported our analysis for one sample
for illustration purpose. Table 5.1 provides the classical ratio estimate eg, the
subjective Bayes estimate eg, the robust Bayes estimate egpp and the empirical
Bayes estimate egg. Table 1 also provides the posterior robustness index for each
estimate which in a sense the sensitivity index of the estimate as the prior varies
over the class {N(f,0%),0% > 0}.

Table 5.1: Estimates, Closeness and Posterior Robustness Index

Predictor lv(y) — e POR

er 0.28426  6.08452x10"3 5.38660x10~*
eo 0.29336 3.01418x10™% 4.57488x10~4
erp 0.28660  3.74880x10~3 4.35696x10~*

egpp 0.29032 5.83622x10~° 3.29786x107%
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An inspection of Table 1 reveals that the subjective Bayes estimator eg is
closest to y(y), but not much good in the posterior robustness. The robust Bayes
estimator egp and the empirical Bayes estimator egp are well behaved in the
sense that they are closer to 7(y) than at least the classical ratio estimate egp
and good in the posterior robustness index. The classical ratio estimate ep is the
worst in terms of both the closeness to y(y) and the posterior robustness index.

APPENDIX

Proof of Theorem 2.1. First observe that the joint distribution of y(s) and
y(3) is given by

u(s) \ _ ][ Aoz(s) (72D<s)+o%x $)2T(s)  ofa(s)aT(3)
y(3) foz(@) )\ cdz@el(s)  TDE)+oie(s)al () )|
(A.1)

Part (i) of Theorem 2.1 follows immediately from (A.1). Again, from (A.1), it
follows that y(3)|s, y(s) ~ N(m, V), where

m = fox(3) + ogz(3)xT (s)[r°D(s) + a5z(s)z” (5)] " (y(s) — Boz(s))  (A.2)
and

V = r2D(5) + 03z(8)a” (5) — 0§ z(5)z” (s)[r* D(s) + oga(s)a” (s)] " bz (s)z” (3).

Now,

a2 D~ Y(s)z(s)zT (s)D (s
[7’2D(S) + o-gq;(s)zT(s)]_l =772 {D—l(s) - ,(,).2 + a(giT((s))D—(lzs)m(i))] )

(A.4)
Hence, using (A.4), it follows from (A.2) that

o2zT(s)D~! s
m = as(a) + ooala)r” (1'724?3—05?)( i)
xz! (8)D7(s)(y(s) — Box(s))
_ o, 967 (5) D (s)(y(s) — Box(s))
= e e T D et )
,307'2 + 08 Zies vixi/h(z:)

R e (4.5)
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g :L'T 8 S)T\S
Vo= 2D+ (1- S ELOT D o

03$( 5)z” (3) }
T2+ 02> i, t2/h(z;)
Part (ii) of Theorem 2.1 follows now from (A.5) and (A.6).

= 72 [D(g) + (A.6)

Proof of Theorem 2.2. The proof of the first part is straightforward, and is
omitted. The conditional distribution of y(3) given (s,y(s)) is

FW(E)ls u(s) = / " &) B (Bls, y(s))dB (A7)
where
Farn(Bls,y(s)
_ - 9mly)im) Em(y(S)lfis) s
= A(w(s))m(Bls, y(s)) + [1 = A( ))]qs(ﬂls o)) ().
Then,

f@)ls,v(s) = Aw(s) /°°f (3)18)mo(Bls, y(s))dp
/ F@E)0)d(Bls, u(s))dp.  (A8)

By Theorem 2.1(ii), [ f(y(5)|8)mo ,Bls,y( ))dB is N{(Bo(s)Bo+(1—Bqg(s ))g )
2(3), 73 (D(5)+ 2] pdf while [%°_ f(4(5)18)ds(Bs, y(s))dB gives N[5 (5)
72D(5)] pdf. Now,

A1(y(s)) = e (L) expl- (o — koo (2%

1€s 1€s
{lTQD(S)JrGow(S)z (s)|71/?

expl— 5 (y(5) — foa(s))" (*D(s) + oF(s)a” (5)) ™ y(s) — Boa(s))]).
(A.9)
Using (A.4) and

72D(s) ooxz(s)

|72D(s) + ogz(s)a’ (s)] = —opx(s) 1

) ,7_211, . i
= IPD)IL+ FaT (5D (9)s(s)] = _B}@Tﬂj—)x
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it follows from (A.9) after some simplifications that A~!(y(s)) = XX,}L(g(s)).

)=
Proof of Theorem 3.1. Note that n[g(s) — BoZ(s)]? ~ ﬂ(%l . Then

E[{Bo(s)Amr(§(s)) — B(s)}*}(u(s) — Boz(s))*/7(s)]
= /oo{ Bo(s) - B( )}2—-7—2——uexp(—g)—u—%—idu
o 1+4g(s exp{%zs)—“} nZ(s)B(s) 2 2%I‘.(%)

(A.10)

where g(s) = (¢/(1 - e))Bo—l/2(s). Next observe that

rhs of (A.10)

oo Bz( 7'2 E ug‘"l

§/0 [1+9 eXP{"Q%%} REere eXp(_2)2%r(%)du
2 f® BY)BTNs) o w wdl
nZ(s) Jo 2g(s exp{%’é(ss)—;‘} xp( 2)2%F(%)d + B(s)]

7% Bi(s) o1 ) Bo(s) 5, ey

= el B O+ Fg )T+ Bl = 0B ). (A1)

Also, writing ¢'(s) = max{1,g(s)},

Ihs of (A.10)

r /°° B3(s)B~!(s) 2Bo(s)
= nz(s) exp{%’é%} g exp{%%g;}
x exp(— u) ui”
2 22r<—)
72 Bp(s)2 1 2Bo(s),-3 _ 2Bo(s) Bo(s), -3
nf(s)[(2g’(s)) B(s){1+ B(s) } 9(s) {1+ Bs )} + B(s)]
= O(B'*(s)). (A12)

Conbining (A.11) and (A.12), Theorem 3.1 follows.

Proof of Theorem 3.2. Recall that MSB = n[§(s) — BoZ(s)]?/Z(s) ~ ET%X%
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Noting that B(s) = min{1,72/MSB} 4 min{1, B(s)/x?}, one gets

Bl(B(s) ~ Bl TPy L gy - poyusay

26 )
< {0 BUIPPE < B + BB - ULyism)
Now,
POG<B6) = [ eplou it
/Os(s) _2_%1% = (2/m)!*BY/*(s).
Moreover,

1
El(=5 = 1*XiIe> ()

X1
oo R oo W us-l
= / le‘f ?2 du — 2P(x? > B(s)) + ue” 2 11” du
By ¥ 220(3) B(s) 22T(3)

[S1ES

o u ’U._%_l e u ’U,E—l
< B~ _"(s)/ e 2 — du—{-/ e 2 — du
B(s)  2:T(}) B(s)  2:0(3)

< B=37(s)T(n)/ Ve + 1.
Combining (A.13) - (A.15), Theorem 3.2 follows.
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