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Abstract

Recently the interval estimation of binomial proportions is revisited in various literatures. This is mainly
due to the erratic behavior of the coverage probability of the well-known Wald confidence interval. Various
alternatives have been proposed. Among them, the Agresti-Coull confidence interval, the Wilson confidence
interval and the Bayes confidence interval resulting from the noninformative Jefferys prior were recommended
by Brown et al. (2001). However, unlike the binomial distribution case, little is known about the properties of the
confidence intervals in finite population sampling. In this note, the property of confidence intervals is investigated
in finite population sampling.
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1. Introduction

The Wald confidence interval has been considered as a standard method for the interval estimation of
a binomial proportion. However, the erratic behavior of the coverage probability of the Wald interval
has been recognized in various literatures. See for example, Blyth and Still (1983), Staner (1998),
Agresti and Coull (1998), Brown et al. (2001, 2002) and Lee (2005). In particular Brown et al. (2001)
investigated the unsatisfactory coverage properties of the Wald interval in details. However, it seems
that some adjustments of the Wald interval are very useful. For example, Agresti and Coull (1998)
showed that an improved interval for p can be obtained by adding two successes and two failures to the
observed counts and then uses the standard method. They claimed that the modification performs well
even for small samples. Another useful Wald-like interval is the Wilson interval discussed by Wilson
(1927). It is shown by Agresti and Coull (1998) that the Wilson interval performs much better than
the Clopper-Pearson exact interval or the Wald interval in terms of having coverage probabilities close
to the nominal confidence level. The Wilson interval was also recommended by Brown et al. (2001)
for use with nearly all sample sizes and parameter values. Lee (2005) developed another Wald-like
confidence interval based on weighted Polya posterior. It was showed that the interval outperforms
the Agresti-Coull interval and is essentially equivalent to the Wilson interval with simplicity.

There are many other confidence intervals for the binomial proportion such as the arcsine interval,
the logit interval, the Jefferys prior interval (Berger, 1985) and the likelihood ratio interval. Among
them, the Wilson interval and the Jefferys prior interval for small n, say less then, or equal to 40, and
the Agresti-Coull interval for larger n were recommended by Brown et al. (2001) in terms of their
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coverage properties and parsimony as measured by expected length. They claimed that for n > 40, the
Wilson, the Jefferys and the Agresti-Coull intervals were all very similar but Agresti-Coull interval
was recommended because of its simplicity.

Unlike the case of the binomial proportion in infinite population, little is investigated in finite
population. Most literatures introduce only the Wald interval. Although Lee (2005) gave a brief sum-
mary for the problem, it is hard to find literatures describing the property of well-known confidence
intervals. Since many confidence intervals such as the Wilson interval can be modified easily for the
interval estimation problem in finite population sampling, it may be surprising. Also, Cai and Kr-
ishnamoorthy (2005) recently developed a simple but effective confidence interval. A summary of
various interval estimators in infinite population is seemed to be necessary. In this note, I investigate
the property of those intervals in terms of coverage probability and expected width in finite population
sampling.

2. Confidence Intervals for a Proportion in Finite Population Sampling

Instead of the binomial distribution, the hypergeometric distribution is related to the estimation of a
proportion in finite population sampling. In what follows, iyper(x; N, n, p) will denote the probability
mass function with N, n and p representing population size, sample size and proportion of success,

respectively. That is,
)

hyper(x;N,n, p) = (N) ’

n

max(0,n — N + Np) < x < min{n, Np),

0, otherwise.

In this scenario, N and n are known constants, and p is unknown parameter with parameter space
P=1{0,1/N,...,(N-1)/N,1}.

2.1. Approximate confidence intervals
2.1.1. Wald interval

For the interval estimation problem, the Wald method may be the most popular, but it seems that there
are two versions of the Wald method. In elementary level textbook, the 95% Wald interval is given as:

px2N1 - Hpg/n-1) @2.1)

where p = X/n,§ =1 - pand f = n/N. See Yamane (1967). However, more advanced textbooks, see
for example Cochran (1977}, gives

1
b+ Za/:l\“*f\/ﬁ@/(n-lﬂzl- . (2.2)

By taking 2 instead of zopp5 &~ 1.96 and the continuity correction, both (2.1) and (2.2) are wider
and provide more proper coverage probabilities than usual Wald interval when sample size is small.
Although by taking wider width, the coverage property is improved, the main problem of the Wald
interval is not its width. In fact, the Wald interval tends to have wider width than its rival intervals,
but to give poor coverage probability.

Among the two Wald intervals, the coverage probability of (2.2) is close to the nominal level than
{2.1). Thus, in what follows, (2.2) will represent the Wald interval.
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2.1.2. Wilson interval

The Wilson interval is the set of p satisfying

N-np(l-p)

C-PINyT

< Za/2~

Writing f* = (n — 1)/(N — 1), the confidence interval can be written as:

— *

f Y *
= \Jnba+ (1= 2 /4 23)

P+ 202

where 7i* = n+ (1 - f)22 , and p* = (X + (1 = )z ,/2)/7*.

Note that, putting f* = 0, (2.3) is the Wilson confidence interval for p under the binomial dis-
tribution. It was numerically shown by Brown er al. (2001) that the Wilson interval behaves quiet
well in terms of the coverage probability and the expected width. However, the first term in the last
square root is getting to zero as p goes to 0 or 1. Thus, the interval width is getting smaller. Although
zi 12/4 prevent the interval width from being zero as the continuity correction in (2.2), it tends to have
short width than necessary when p is near O or 1, and as a result, there are big down-spikes in its
coverage probability plots. See also Figure 1. You may refer Lee (2005) to the same phenomenon in
the binomial distribution case.

2.1.3. Agresti-Coull interval

Agresti and Coull (1998) developed a new confidence interval for a binomial proportion by so-called
“adding two successes and two failures” to the observed count. Presumably the strategy will work for
the finite population sampling as well.

Under our circumstance, the Agresti-Coull interval would be

Pxzap+/l = FVBG/ (- 1) 2.4

where i = n+4,p = (X + 2)/7 and f = 7i/N. Thus the formula is exactly same as (2.2) except
the continuity correction. Since my previous numerical studies showed that the Agresti-Coull interval
with the continuity correction is too conservative, it is omitted.

Four artificial observations (two successes and two failures) prevent pg/(7i — 1) from being zero,
and there is no down-spike in its coverage probability plots. In fact, the Agresti-Coull interval is little
bit conservative. Note that, Agresti and Coull (1998) justified the Agresti-Coull interval by Bayesian
prospect, but the variance of j is slightly overestimated in a Bayesian paradigm. The conservatism
may be due to the overestimation. However, the Agresti-Coull interval was recommended by Brown et
al. (2001) for large sample sizes, say n > 40, for estimating a proportion of the binomial distribution.

2.1.4. Weighted Polya posterior interval

The weighted Polya posterior interval was developed by Lee (2005) using weighted Polya posterior.
Originally the weighted Polya posterior was developed by Meeden (1999) to solve statistical problems
in skewed population and small sample size. Since in the interval estimation of a proportion, most
problems occur when sample size is small and p is near O or 1, his approach is applicable.

When underlying distribution is binomial, the weighted Polya posterior can be essentially obtained
by a conjugate beta prior distribution with mean 1/2 and variance 1/4(2£ + 1) where £ is the weight. In
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Figure 1: Coverage probabilities of 4 approximate 95% confidence intervals when N = 500 and n = 20.

finite population sampling, the weighted Polya posterior is not an known distribution, but the posterior
mean and variance of p are known as (Lee, 2005)

& N+2§ 1 X+§(1 X+§)
(n+268)\2 n+2+1n+2 Cn+28)

Note that when £ = 0, the conditional mean is just p and variance is (1 — /)p(1 — p)/(n — DI(n —
1)/(n + 1)]. Thus, the variance is the same as the usual frequentist formulation of variance except
the factor (n — 1)/(n + 1). If we construct a confidence interval using Wald procedure with p and
{1~ Hp(l - p)/(n— 1), it would be wider than a proper interval in the Bayesian point of view except
that the sample size is large enough. Thus it is desirable to set £ as an appropriate nonzero value. For
the binomial distribution case, £ = z(zy ! 2 was chosen. Taking the same value of £, and considering

(N + z(zl /2)/N ~ 1, the weighted Polya posterior interval is constructed as:

p=p+2(1-1)

G~ﬂ and (1-/)

X+22,/2 X+22,/2
ﬁi%mvl—f¢ QW/(I— %?/]ﬁn+z2+n 2.5)

n+za/2 ?24-26“,2

Let CI4(X) be a confidence interval due to method A. An usual criterion for judging an approxi-
mate method A is its coverage probability which is defined as

Ca(p) = ). I(p € CLs(x)) hyper(x; N, p) 2.6)
xeX

where [ is the usual indicator function.
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Figure 2: Coverage probabilities of 2 exact 95% confidence intervals when N = 500 and n = 20.

The general patterns of coverage probability of 4 approximate confidence intervals are shown in
Figure 1. Except the Wald interval, the nominal level is well approximated by the coverage probabil-
ities. Also comparing Figure 1 of Lee (2005), it can be observed that the confidence intervals behave
very similarly to the corresponding intervals in binomial distribution case. For instance, the Agresti-
Coull interval is more conservative than the Wilson and the weighted Polya posterior, and the Wald
interval should be used with great care when sample size is small. 1 examined the coverage patterns
of various population sizes N up to 2000 but N did not play much role in those patterns. See Figure 3.

2.2. Exact Confidence intervals

Recently Cai and Krishnamoorthy (2005) developed a confidence interval by combining an exact
test and a test considered in Kulkarni and Shah (1995) and Krishnamoorthy ez al. (2002). Using the
notation of Cai and Krishnamoorthy (2005), an obvious exact confidence interval, due to Clopper and
Pearson (1936), can be obtained by considering testing hypotheses Hy : p = po vs. H; : p # po. That
1s, for a given «, and observed value x, an exact test reject Hy when the p-value

Pe(po) = 2min{ Pr[X < x| pol, Pr{X > x| po] }

is less or equal to a, while an exact confidence interval is the set {p : Pe(p) > &}. It is well-known
that the Clopper-Pearson exact confidence interval is too conservative when underlying distribution

is discrete. To adjust the conservatism, Cai and Krishnamoorthy (2005) applied another test which
reject Hy when

Po(po) = Pr [(X = npo)* > (x = npo)?| po].

is less than or equal to @. A new combined test rejects the null hypothesis when both tests reject.
Thus, a new combined interval can be constructed as a set of p satisfying

min (P(p), Pu(p)) > @. @7

Cai and Krishnamoorthy (2005) noted the combined one is not exact. However, based on my
numerical study, the combined one was near exact, and hence it is classified as an exact confidence
interval in this paper. The performance of combined interval is even better than the separated ones.

The coverage patterns of the Clopper-Pearson interval and the combined interval are shown in
Figure 2. As one can expect, both intervals are conservative, but the combined interval behaves
reasonably compared with the approximate intervals.
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Table 1: Six 95% confidence intervals for p when N = 500,n = 100, x = 37.

Method Lower limit Upper limit Interval width
‘Wald(with continuity correction) 0.280 0.460 0.180
Agresti-Coull 0.292 0.458 0.166
Weighted Polya posterior 0.292 0.456 0.164
Wilson 0.292 0.456 0.164
Clopper-Pearson 0.286 0.462 0.176

Combined ‘ 0.290 0.460 0.170

Ezample 1. Cochran (1977) gave a simple example for the estimation of a proportion in finite
population sampling. In a random sample of size 100, from a population size 500, 37 units were
classified into a certain class. In this example, 95% confidence limits are calculated by the 5 methods
as shown in Table 1. It can be observed that the Wald interval is widest. It is even wider than the
Clopper-Pearson exact confidence interval. The weighted Polya posterior and the Wilson intervals are
narrower than any other intervals.

3. Comparison of Confidence Intervals

The coverage probabilities of 95% confidence intervals with various population and sample sizes are
demonstrated in Figure 3 by the Box-Percentile plot proposed by Esty and Banfield (2003). It seems
that the weighted Polya posterior and the Wilson intervals approximate well the nominal level than
other intervals regardiess of the population and sample sizes, and the Wald interval behaves very
poorly. We may exclude it from our consideration when sample size is small.

Brown et al. (2001) argued that “most statistical methods are only felt to be approximately valid
as representations of the true situation.” Hence the resulting coverage properties from those models
are best only approximately accurate. The coverage should be close to the nominal confidence level
rather than to guarantee it is at least (1 — ) X 100%. In this prospective, a confidence interval is good,
if the coverage probability is as close to the nominal level as possible. Thus, the Mean Absolute Er-
ror(MAE) or the Mean Squared Error(MSE) of the coverage probabilities could be excellent criterions
for comparing confidence intervals. The Wilson interval is the best in these criterions. Note however,
the weighted Polya posterior interval has competitive power in that the difference in the MAE or the
MSE not large enough, and the Wilson interval has certain weaknesses. As shown in Figure 1, it has
big down-spikes at each edge.

The expected width of a confidence interval A, which is defined as

EW,(p) = E, (Wa(X)) = )" Wa(x) hyper(x; N,n, p) 3.1
¢

where Wu(x) is the width of confidence interval when x is observed, is another important factor
for evaluating the performance of confidence intervals. Since a wide interval is noninformative, a
confidence interval with small expected width is preferable. Figure 4 demonstrates the expected width
of 95% confldence intervals when N = 500 and n up to 50. It can be observed that the Wald interval
tends to be wide when p is around 0.5, even wider than the exact Copper-Pearson interval. Thus, the
poor coverage probability of the Wald in that area is not due to its width. Rather, it is mainly due
to the wrong center of interval. Note that the other three approximate intervals adjust the center p
toward 1/2. In view of Figure 1, this kind of adjustment seems to be good. Thus, this might justify
the adjustment of the Wilson, the Agresti-Coull and the weighted Polya posterior intervals. Among
the three, the Agresti-Coull interval has the largest expected width except each extreme tail areas.
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Figure 3: The Box-percentile plot of the coverage probabilities of 95% confidence intervals.

and hence is the most conservative. In those areas, the expected width of the Agresti-Coull interval
is slightly smaller than the weighted Polya posterior, but the difference between two is negligible.
However, the difference with the Wilson seems to be meaningful, because the down-spikes of the
Wilson occur in those areas. It seems that the Wilson interval is too narrow in each tail area. It also
seems that the Agresti-Coull and the weighted Polya posterior intervals would not have proper width
in those areas when sample size small, because the expected widths of the two are larger than the
near exact combined interval, and hence more conservative. On the other hand, the combined interval
is much wider than the other two. Thus, none can be best, but the weighted Polya posterior and the
Wilson intervals are recommendable in view of the approximation and the expected width criterions
when sample size is small, say n < 40.

We have chosen two approximate confidence intervals by the two criterions. Note however, the
exact interval is conservative to guarantee the minimum level of coverage probability at sacrifice of
the expected width, while the approximate confidence interval oscillates the nominal level with rela-
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Figure 4: Expected widths of 95% confidence intervals when N = 500 and n = 20, 30,40 and 50.

tively small expected width. The criterions favors the approximate confidence interval too much. One
might think that the positive difference between coverage probability and nominal level should be
treated differently from the negative one. Since, a wide interval tends to be conservative, the coverage
probability and the expected width have a trade-off relationship. Thus, we should compare the ap-
proximate and the exact confidence intervals separately, or need another criterion for fair comparison.
One criterion for doing this can be found in Lee (2009) or Casella et al. (1994). However, 1 do not
want to use their approaches, because they require an appropriate value of weight between the cover-
age probability and the expected length. I believe that the weight is a matter of preference. If one’s
prime interest is the minimum level of coverage, then an exact confidence interval is one’s choice. In
this case, the combined interval rather than the Clopper-Pearson could be excellent one, because it is
almost exact with much smaller expected width.

4. Conclusion

The approximate confidence intervals considered in this paper behave quite similarly to the corre-
sponding intervals in binomial distribution case. Thus similar conclusions can be extracted among the
approximate confidence intervals. That is, the Wald interval should be not be considered for a serious
statistical problem specially when sample size n is small, say n < 40. In this case, the weighted
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Polya posterior and the Wilson intervals are recommendable. Since they give quite reasonable cover-
age probabilities for almost all p, and the combined interval tends to be too wide, I believe that the
recommendation is still valid, even if we consider exact intervals together.

For large sample, the Wilson, the weighted Polya posterior, the Agresti-Coull and the combined
intervals are all equally good. However, the Agresti-Coull interval is recommendable because of the
simplicity emphasized by Brown er al. (2001). Unlike the binomial distribution case, the weighted
Polya posterior interval is not as simple as the Agresti-Coull.
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