• Title/Summary/Keyword: finite group

Search Result 813, Processing Time 0.031 seconds

A property of surface groups

  • Moon, Myoung-Ho
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.3
    • /
    • pp.825-829
    • /
    • 1996
  • We prove that if G is the fundamental group of a closed surface or a Seifert fibered space and K is a finitely generated subgroup of G, and if for any element g in G there exists an integer $n_g$ such that $g^{n_g}$ belongs to K, then K is of finite index in G.

  • PDF

FREE ACTIONS ON THE 3-DIMENSIONAL NILMANIFOLD

  • Oh, Myung Sung;Shin, Joonkook
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.20 no.3
    • /
    • pp.223-230
    • /
    • 2007
  • We study free actions of finite groups on the 3-dimensional nilmanifold and classify all such group actions, up to topological conjugacy. This work generalize Theorem 3.10 of [1].

  • PDF

Numerical modelling and finite element analysis of stress wave propagation for ultrasonic pulse velocity testing of concrete

  • Yaman, Ismail Ozgur;Akbay, Zekai;Aktan, Haluk
    • Computers and Concrete
    • /
    • v.3 no.6
    • /
    • pp.423-437
    • /
    • 2006
  • Stress wave propagation through concrete is simulated by finite element analysis. The concrete medium is modeled as a homogeneous material with smeared properties to investigate and establish the suitable finite element analysis method (explicit versus implicit) and analysis parameters (element size, and solution time increment) also suitable for rigorous investigation. In the next step, finite element analysis model of the medium is developed using a digital image processing technique, which distinguishes the mortar and aggregate phases of concrete. The mortar and aggregate phase topologies are, then, directly mapped to the finite element mesh to form a heterogeneous concrete model. The heterogeneous concrete model is then used to simulate wave propagation. The veracity of the model is demonstrated by evaluating the intrinsic parameters of nondestructive ultrasonic pulse velocity testing of concrete. Quantitative relationships between aggregate size and testing frequency for nondestructive testing are presented.

FREE ACTIONS ON THE NILMANIFOLD

  • Shin, Joonkook
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.10 no.1
    • /
    • pp.161-175
    • /
    • 1997
  • We classify free actions of finite abelian groups on the 3-dimensional nilmanifold, up to topological conjugacy. By the works of Bieberbach and Waldhausen, this classification problem is reduced to classifying all normal subgroups of almost Bieberbach groups of finite index, up to affine conjugacy.

  • PDF

Margolis homology and morava K-theory of classifying spaces for finite group

  • Cha, Jun-Sim
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.563-571
    • /
    • 1995
  • The recent work of Hopkins, Kuhn and Ravenel [H-K-R] indicates the Morava K-theory, $K(n)^*(-)$, occupy an important and fundamental place in homology theory. In particular $K(n)^*(BG)$ for classifying spaces of finite groups are studied by many authors [H-K-R], [R], [T-Y 1, 2] and [Hu].

  • PDF

RESIDUAL FINITENESS AND ABELIAN SUBGROUP SEPARABILITY OF SOME HIGH DIMENSIONAL GRAPH MANIFOLDS

  • Kim, Raeyong
    • Korean Journal of Mathematics
    • /
    • v.29 no.3
    • /
    • pp.603-612
    • /
    • 2021
  • We generalize 3-manifolds supporting non-positively curved metric to construct manifolds which have the following properties : (1) They are not locally CAT(0). (2) Their fundamental groups are residually finite. (3) They have subgroup separability for some abelian subgroups.

A cure process modeling of LED encapsulant silicone (LED 패키징용 실리콘의 경화공정 모델링)

  • Song, Min-Jae;Kim, Heung-Kyu;Kang, Jeong Jin;Kim, won-Hee
    • Design & Manufacturing
    • /
    • v.6 no.1
    • /
    • pp.84-89
    • /
    • 2012
  • Silicone is recently used for LED chip encapsulment due to its good thermal stability and optical transmittance. In order to predict residual stress which causes optical briefringence and mechanical warpage of silicone, finite element analysis was conducted for both curing and cooling process during silicone molding. For analysis of curing process, a cure kinetics model was derived based on the differential scanning calorimetry(DSC) test and applied to the material properties for finite element analysis. Finite element simulation result showed that the curing as well as the cooling process should be designed carefully so as to reduce the residual stress although the cooling process plays the bigger role than curing process in determining the final residual stress state. In addition, birefringence experiment was carried out in order to observe residual stress distribution. Experimental results showed that cooling-induced birefringence was larger than curing-induced birefringence.

  • PDF

Unified Analytic Calculation Method for Zoom Loci of Zoom Lens Systems with a Finite Object Distance

  • Ryu, Jae Myung;Oh, Jeong Hyo;Jo, Jae Heung
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.134-145
    • /
    • 2014
  • The number of lens groups in modern zoom camera systems is increased above that of conventional systems in order to improve the speed of the auto focus with the high quality image. As a result, it is difficult to calculate zoom loci using the conventional analytic method, and even the recent one-step advanced numerical calculation method is not optimal because of the time-consuming problem generated by the iteration method. In this paper, in order to solve this problem, we suggest a new unified analytic method for zoom lens loci with finite object distance including infinite object distance. This method is induced by systematically analyzing various distances between the object and other groups including the first lens group, for various situations corresponding to zooming equations of the finite lens systems after using a spline interpolation for each lens group. And we confirm the justification of the new method by using various zoom lens examples. By using this method, we can easily and quickly obtain the zoom lens loci not only without any calculation process of iteration but also without any limit on the group number and the object distance in every zoom lens system.