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FREE ACTIONS ON THE
3–DIMENSIONAL NILMANIFOLD

Myung Sung Oh* and Joonkook Shin**

Abstract. We study free actions of finite groups on the 3-dimensional
nilmanifold and classify all such group actions, up to topological conjugacy.
This work generalize Theorem 3.10 of [1].

1. Introduction

The general question of classifying finite group actions on a closed 3-

manifold is very hard. However, Free actions of finite, cyclic and abelian

groups on the 3-torus were studied in [4], [5] and [6], respectively. It is

known ([3; Proposition 6.1.]) that there are 15 classes of distinct closed 3-

dimensional manifolds M with a Nil-geometry up to Seifert local invariant.

It is interesting that if a finite group acts freely on the 3-dimensional nilman-

ifold with the first homology Z2, then it is cyclic [2]. Free actions of finite

abelian groups on the 3-dimensional nilmanifold with the first homology

Z2 ⊕ Zp were classified in [1].

Let H be the 3–dimensional Heisenberg group; i.e. H consists of all 3× 3

real upper triangular matrices with diagonal entries 1. That is,

H =

{[
1 x z
0 1 y
0 0 1

]
: x, y, z ∈ R

}
.

Thus H is a simply connected, 2-step nilpotent Lie group.
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For each integer p > 0, let

Γp =

{[
1 l n

p

0 1 m
0 0 1

] ∣∣∣∣∣ l, m, n ∈ Z
}

.

Then Γ1 is the discrete subgroup of H consisting of all integral matrices and

Γp is a lattice of H containing Γ1 with index p. Clearly

H1(H/Γp; Z) = Γp/[Γp,Γp] = Z2 ⊕ Zp.

Note that these Γp
′s produce infinitely many distinct nilmanifolds Np =

H/Γp covered by N1. Free actions of finite groups on the 3-dimensional nil-

manifold which yield an orbit manifold homeomorphic toH/π were classified

in [7], where π = 〈t1, t2, t3, | [t2, t1] = tn3 , [t3, t1] = [t3, t2] = 1〉.
In this paper, we shall find all possible finite groups acting freely on each

Np by utilizing the method used in [1] and classify all such group actions,

up to topological conjugacy. We shall use all notations and most of the

Introduction, Section 2 and Section 3 of [1]. This work generalize Theorem

3.10 of [1].

Let πi = 〈t1, t2, t3, α | [t2, t1] = tK3 , [t3, α] = [t3, t1] = [t3, t2] = 1,

αt1α
−1 = t1t2, αt2α

−1 = t−1
1 , α6 = tj3 〉,

α =





 1 0 − j

6K
0 1 0
0 0 1


 ,

([
1
2
0

]
,

[
1 −1
1 0

])
 ,

where 1 ≤ i ≤ 4, K = 6n for the cases of π1 and π3, K = 6n − 2 for

the case of π2 and K = 6n − 4 for the case of π4; j = 1 for the cases of

π1 and π2, and j = 5 otherwise, be an almost Bieberbach group and N be

a normal nilpotent subgroup of πi with G = πi/N finite. For the almost

Bieberbach group πi, we find all normal nilpotent subgroups N of πi, and

classify (N,πi) up to affine conjugacy.

2. Free actions of finite groups on the 3-dimensional nilmanifold

In this section, we shall find all possible finite groups acting freely (up

to topological conjugacy) on the 3-dimensional nilmanifold Np which yield

an orbit manifold homeomorphic to H/πi. This was done by the program

MATHEMATICA[8] and hand-checked.
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Lemma 1. Let N be a normal nilpotent subgroup of an almost Bieber-

bach group πi(i = 1, 2, 3, 4) and isomorphic to Γp. Then N can be repre-

sented by one of the following sets of generators

N1 = 〈td1
1 tm2 , td2

2 , t
Kd1d2

p

3 〉, N2 = 〈td1
1 tm2 , td2

2 t
Kd1d2

2p

3 , t
Kd1d2

p

3 〉,

N3 = 〈td1
1 tm2 t

Kd1d2
2p

3 , td2
2 , t

Kd1d2
p

3 〉, N4 = 〈td1
1 tm2 t

Kd1d2
2p

3 , td2
2 t

Kd1d2
2p

3 , t
Kd1d2

p

3 〉,

where d1
d2

+ m(m−d1)
d1d2

∈ Z and d1 is a common divisor of m and d2.

Proof. Let N be a normal nilpotent subgroup of πi(i = 1, 2, 3, 4) and

isomorphic to Γp. Then by Proposition 3.1 in [1],

N = 〈 td1
1 tm2 t`3, td2

2 tr3, t
Kd1d2

p

3 〉,
(

0 ≤ m < d2, 0 ≤ `, r <
Kd1d2

p

)
,

where K = 6n for i = 1, 3, K = 6n− 2 for i = 2 and K = 6n− 4 for i = 4.

Since N is a normal nilpotent subgroup of πi, the following two relations

α(td1
1 tm2 t`3)α

−1 = (t1t2)d1(t−1
1 )mt`3 = (td1

1 tm2 t`3)
d1−m

d1 (td2
2 tr3)

x(t
Kd1d2

p

3 )y ∈ N,

α(td2
2 tr3)α

−1 = t−d2
1 tr3 = (td1

1 tm2 t`3)
− d2

d1 (td2
2 tr3)

m
d1 (t

Kd1d2
p

3 )z ∈ N

show that

x =
d1

d2
+

m(m− d1)
d1d2

∈ Z,
m

d1
∈ Z,

d2

d1
∈ Z.

Thus d1 is a common divisor of m and d2.

Let β = α3. Then the following two relations

β(td1
1 tm2 t`3)β

−1 = (td1
1 tm2 t`3)

−1(t
Kd1d2

p

3 )x ∈ N,

β(td2
2 tr3)β

−1 = (td2
2 tr3)

−1(t
Kd1d2

p

3 )y ∈ N

show that

x =
2pl

Kd1d2
− pm

d2
+

p(m− d1)
d1d2

, y =
2pr

Kd1d2
+

p

d1

must be integers. Therefore we can get 2pl
Kd1d2

∈ Z and 2pr
Kd1d2

∈ Z. Since

0 ≤ l, r < Kd1d2
p , we have l = 0 or Kd1d2

2p and r = 0 or Kd1d2
2p . Therefore we

have proved the lemma. ¤
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Theorem 2. Let Nm and Nm′
be normal nilpotent subgroups of πi

whose sets of generators are

Nm = 〈 t1d1tm2 t`3, td2
2 tr3, t

Kd1d2
p

3 〉,

Nm′
= 〈 t1d1tm

′
2 t`

′
3 , td2

2 tr
′

3 , t
Kd1d2

p

3 〉.

If m 6= m′, then Nm is not affinely conjugate to Nm′
.

Proof. By applying the method used in Theorem 3.3 of [1], we can find

the normalizer NAff(H)(πi):

µ(x, y, z, u, v) =

([
1 x z
0 1 y
0 0 1

]
,

([
u
v

]
,

[
a b
c d

]))
,

where x ∈ Z, y ∈ Z, z ∈ R and
[

a b
c d

]
∈ Z6 o Z2 =

〈[
1 −1
1 0

]
,

[
0 1
1 0

]〉
.

Note that
[

u
v

]
∈ Aut(H) can be evaluated respectively by the elements of

Z6 o Z2. More precisely, the values of
[

u
v

]
∈ Aut(H) are

[
1
1

]
,

[
1
2
1

]
,

[
0
1
2

]
,

[
1
1
2

]
,

[
0
0

]
,

[
1
2
0

]
.

For example, we can find

µ(x, y, z, 1,
1
2
) =

([
1 x z
0 1 y
0 0 1

]
,

([
1
1
2

]
,

[
−1 0
−1 1

]))
∈ NAff(H)(πi).

Assume that Nm is affinely conjugate to Nm′
. Then there exists

µ =

([
1 x z
0 1 y
0 0 1

]
,

([
u
v

]
,

[
a b
c d

]))
∈ NAff(H)(πi)

satisfying either

(∗) µ(t1d1t2
mt`3)µ

−1 = td1
1 t2

m′
t`
′

3 , µ(td2
2 tr3)µ

−1 = td2
2 tr

′
3 ,
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or

(∗∗) µ(t1d1t2
mt`3)µ

−1 = td2
2 t3

r′ , µ(td2
2 tr3)µ

−1 = td1
1 t2

m′
t`
′

3 .

From (∗), we obtain the following relations:

bd2 = 0, dd2 = d2, ad1 + bm = d1, cd1 + dm = m′.

Thus we have

b = 0, d = 1, a = 1, cd1 = m′ −m.

Since [
a b
c d

]
=

[
1 0
c 1

]
∈ Z6 o Z2,

we have c = 0 and m = m′, which is a contradiction. However in (∗∗), we

obtain the following relations:

bd2 = d1, dd2 = m′, ad1 + bm = 0, cd1 + dm = d2.

The relation dd2 = m′ < d2 induces m′ = 0 and d = 0. Since

cd1 = cbd2 = d2, bc = 1,

[
a b
c d

]
=

[
a b
c 0

]
∈ Z6 o Z2,

we have a = 0 and so m = 0, which is a contradiction. Therefore we

complete the proof. ¤

In the following theorem, we show when affine conjugacy occurs among

4 types of normal nilpotent subgroups Nj(j = 1, 2, 3, 4).

Theorem 3. Let Nj(j = 1, 2, 3, 4) be a normal nilpotent subgroup of

πi(i = 1, 2, 3, 4) and isomorphic to Γp. Then we have the following:

(1) N2 ∼ N3 if and only if m = 0, d1 = d2.

(2) N1 � N2, N1 � N4, N3 � N4.

Proof. (1) Suppose that N2 is affinely conjugate to N3. Then there

exists

µ =

([
1 x z
0 1 y
0 0 1

]
,

([
u
v

]
,

[
a b
c d

]))
∈ NAff(H)(πi)
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satisfying either

(∗) µ(t1d1t2
m)µ−1 = td1

1 t2
mt3

Kd1d2
2p , µ(td2

2 t
Kd1d2

2p

3 )µ−1 = td2
2 ,

or

(∗∗) µ(t1d1t2
m)µ−1 = td2

2 , µ(td2
2 t

Kd1d2
2p

3 )µ−1 = td1
1 t2

mt3
−Kd1d2

2p .

From (∗), we obtain the following relations:

bd2 = 0, dd2 = d2, ad1 + bm = d1, cd1 + dm = m.

Thus we have
[

a b
c d

]
=

[
1 0
0 1

]
and x = d1

2p . Note that d1 is a divisor of

p. Since µ ∈ NAff(H)(πi), we have x = d1
2p ∈ Z, which is a contradiction.

However in (∗∗), we obtain the following relations:

bd2 = d1, dd2 = m, ad1 + bm = 0, cd1 + dm = d2.

The relation dd2 = m < d2 induces m = 0 and d = 0. Thus we have a = 0

and b = c = 1. Therefore we have d1 = d2 and m = 0.

Conversely, suppose that m = 0 and d1 = d2. Then N2 ∼ N3 by using

([
1 0 0
0 1 0
0 0 1

]
,

([
0
0

]
,

[
0 1
1 0

]))
∈ NAff(H)(πi).

(2) Suppose that N1 is affinely conjugate to N2. Then there exists µ ∈
NAff(H)(πi) satisfying either

(∗) µ(t1d1t2
m)µ−1 = td1

1 t2
m, µ(td2

2 )µ−1 = td2
2 t

Kd1d2
2p

3 ,

or

(∗∗) µ(t1d1t2
m)µ−1 = td2

2 t
Kd1d2

2p

3 , µ(td2
2 )µ−1 = td1

1 t2
m.

From (∗), we obtain that
[

a b
c d

]
=

[
1 0
0 1

]
, x = −d1

2p
, y = −m

2p
.

Since µ ∈ NAff(H)(πi), we have x = −d1
2p ∈ Z, which is a contradiction.

From (∗∗), we obtain the following relations:

bd2 = d1, dd2 = m, ad1 + bm = 0, cd1 + dm = d2.



Free actions on the 3-dimensional nilmanifold 229

The relation dd2 = m < d2 induces d = 0 and m = 0. Thus we have

a = 0, b = c = 1, x = −d1

2p
.

Since µ ∈ NAff(H)(πi), we have x = −d1
2p ∈ Z, which is a contradiction.

Therefore N1 is not affinely conjugate to N2.

The other cases can be done similarly. ¤

Note that πi/N is abelian if and only if N ⊃ [πi, πi] = 〈t1, t2, tK3 〉, where

K = 6n for i = 1, 3, K = 6n− 2 for i = 2 and K = 6n− 4 for i = 4. Thus

we obtain the following result, which is the same as Theorem 3.10 of [1].

Corollary 4. The following table gives a complete list of all free ac-

tions(up to topological conjugacy) of finite abelian groups G on Np which

yield an orbit manifold homeomorphic to H/πi, (i = 1, 2, 3, 4).

Group G AC classes of normal nilpotent subgroups

Z 6K
p

K
p ∈ N N = 〈t1, t2, t

K
p

3 〉
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