FREE ACTIONS ON THE 3-DIMENSIONAL NILMANIFOLD

Myung Sung Oh* and Joonkook Shin**

Abstract

We study free actions of finite groups on the 3-dimensional nilmanifold and classify all such group actions, up to topological conjugacy. This work generalize Theorem 3.10 of [1].

1. Introduction

The general question of classifying finite group actions on a closed 3manifold is very hard. However, Free actions of finite, cyclic and abelian groups on the 3 -torus were studied in [4], [5] and [6], respectively. It is known ([3; Proposition 6.1.]) that there are 15 classes of distinct closed 3dimensional manifolds M with a Nil-geometry up to Seifert local invariant. It is interesting that if a finite group acts freely on the 3-dimensional nilmanifold with the first homology \mathbb{Z}^{2}, then it is cyclic [2]. Free actions of finite abelian groups on the 3 -dimensional nilmanifold with the first homology $\mathbb{Z}^{2} \oplus \mathbb{Z}_{p}$ were classified in [1].

Let \mathcal{H} be the 3 -dimensional Heisenberg group; i.e. \mathcal{H} consists of all 3×3 real upper triangular matrices with diagonal entries 1 . That is,

$$
\mathcal{H}=\left\{\left[\begin{array}{ccc}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right]: x, y, z \in \mathbb{R}\right\}
$$

Thus \mathcal{H} is a simply connected, 2 -step nilpotent Lie group.

[^0]For each integer $p>0$, let

$$
\Gamma_{p}=\left\{\left.\left[\begin{array}{ccc}
1 & l & \frac{n}{p} \\
0 & 1 & m \\
0 & 0 & 1
\end{array}\right] \right\rvert\, l, m, n \in \mathbb{Z}\right\}
$$

Then Γ_{1} is the discrete subgroup of \mathcal{H} consisting of all integral matrices and Γ_{p} is a lattice of \mathcal{H} containing Γ_{1} with index p. Clearly

$$
\mathrm{H}_{1}\left(\mathcal{H} / \Gamma_{p} ; \mathbb{Z}\right)=\Gamma_{p} /\left[\Gamma_{p}, \Gamma_{p}\right]=\mathbb{Z}^{2} \oplus \mathbb{Z}_{p}
$$

Note that these $\Gamma_{p}{ }^{\prime}$ s produce infinitely many distinct nilmanifolds $\mathcal{N}_{p}=$ \mathcal{H} / Γ_{p} covered by \mathcal{N}_{1}. Free actions of finite groups on the 3 -dimensional nilmanifold which yield an orbit manifold homeomorphic to \mathcal{H} / π were classified in [7], where $\pi=\left\langle t_{1}, t_{2}, t_{3}, \mid\left[t_{2}, t_{1}\right]=t_{3}^{n}, \quad\left[t_{3}, t_{1}\right]=\left[t_{3}, t_{2}\right]=1\right\rangle$.

In this paper, we shall find all possible finite groups acting freely on each \mathcal{N}_{p} by utilizing the method used in [1] and classify all such group actions, up to topological conjugacy. We shall use all notations and most of the Introduction, Section 2 and Section 3 of [1]. This work generalize Theorem 3.10 of [1].

$$
\begin{gathered}
\text { Let } \pi_{i}=\left\langle t_{1}, t_{2}, t_{3}, \alpha\right|\left[t_{2}, t_{1}\right]=t_{3}^{K}, \quad\left[t_{3}, \alpha\right]=\left[t_{3}, t_{1}\right]=\left[t_{3}, t_{2}\right]=1, \\
\left.\alpha t_{1} \alpha^{-1}=t_{1} t_{2}, \alpha t_{2} \alpha^{-1}=t_{1}^{-1}, \alpha^{6}=t_{3}^{j}\right\rangle \\
\alpha=\left(\left[\begin{array}{ccc}
1 & 0 & -\frac{j}{6 K} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],\left(\left[\begin{array}{c}
\frac{1}{2} \\
0
\end{array}\right],\left[\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right]\right)\right)
\end{gathered}
$$

where $1 \leq i \leq 4, \quad K=6 n$ for the cases of π_{1} and $\pi_{3}, K=6 n-2$ for the case of π_{2} and $K=6 n-4$ for the case of $\pi_{4} ; j=1$ for the cases of π_{1} and π_{2}, and $j=5$ otherwise, be an almost Bieberbach group and N be a normal nilpotent subgroup of π_{i} with $G=\pi_{i} / N$ finite. For the almost Bieberbach group π_{i}, we find all normal nilpotent subgroups N of π_{i}, and classify $\left(N, \pi_{i}\right)$ up to affine conjugacy.

2. Free actions of finite groups on the 3 -dimensional nilmanifold

In this section, we shall find all possible finite groups acting freely (up to topological conjugacy) on the 3-dimensional nilmanifold \mathcal{N}_{p} which yield an orbit manifold homeomorphic to \mathcal{H} / π_{i}. This was done by the program MATHEMATICA[8] and hand-checked.

Lemma 1. Let N be a normal nilpotent subgroup of an almost Bieberbach group $\pi_{i}(i=1,2,3,4)$ and isomorphic to Γ_{p}. Then N can be represented by one of the following sets of generators

$$
N_{1}=\left\langle t_{1}^{d_{1}} t_{2}^{m}, t_{2}^{d_{2}}, t_{3}^{\frac{K d_{1} d_{2}}{p}}\right\rangle, \quad N_{2}=\left\langle t_{1}^{d_{1}} t_{2}^{m}, t_{2}^{d_{2}} t_{3}^{\frac{K d_{1} d_{2}}{2 p}}, t_{3}^{\frac{K d_{1} d_{2}}{p}}\right\rangle,
$$

$$
N_{3}=\left\langle t_{1}^{d_{1}} t_{2}^{m} t_{3}^{\frac{K d_{1} d_{2}}{2 p}}, t_{2}^{d_{2}}, t_{3}^{\frac{K d_{1} d_{2}}{p}}\right\rangle, \quad N_{4}=\left\langle t_{1}^{d_{1}} t_{2}^{m} t_{3}^{\frac{K d_{1} d_{2}}{p p}}, t_{2}^{d_{2}} t_{3}^{\frac{K d_{1} d_{2}}{2 p}}, t_{3}^{\frac{K d_{1} d_{2}}{p}}\right\rangle
$$

where $\frac{d_{1}}{d_{2}}+\frac{m\left(m-d_{1}\right)}{d_{1} d_{2}} \in \mathbb{Z}$ and d_{1} is a common divisor of m and d_{2}.
Proof. Let N be a normal nilpotent subgroup of $\pi_{i}(i=1,2,3,4)$ and isomorphic to Γ_{p}. Then by Proposition 3.1 in [1],

$$
N=\left\langle t_{1}^{d_{1}} t_{2}^{m} t_{3}^{\ell}, t_{2}^{d_{2}} t_{3}^{r}, t_{3}^{\frac{K d_{1} d_{2}}{p}}\right\rangle, \quad\left(0 \leq m<d_{2}, 0 \leq \ell, r<\frac{K d_{1} d_{2}}{p}\right),
$$

where $K=6 n$ for $i=1,3, K=6 n-2$ for $i=2$ and $K=6 n-4$ for $i=4$. Since N is a normal nilpotent subgroup of π_{i}, the following two relations

$$
\begin{aligned}
& \alpha\left(t_{1}^{d_{1}} t_{2}^{m} t_{3}^{\ell}\right) \alpha^{-1}=\left(t_{1} t_{2}\right)^{d_{1}}\left(t_{1}^{-1}\right)^{m} t_{3}^{\ell}=\left(t_{1}^{d_{1}} t_{2}^{m} t_{3}^{\ell}\right)^{\frac{d_{1}-m}{d_{1}}}\left(t_{2}^{d_{2}} t_{3}^{r}\right)^{x}\left(t_{3}^{\frac{K d_{1} d_{2}}{p}}\right)^{y} \in N, \\
& \alpha\left(t_{2}^{d_{2}} t_{3}^{r}\right) \alpha^{-1}=t_{1}^{-d_{2}} t_{3}^{r}=\left(t_{1}^{d_{1}} t_{2}^{m} t_{3}^{\ell}\right)^{-\frac{d_{2}}{d_{1}}}\left(t_{2}^{d_{2}} t_{3}^{r}\right)^{\frac{m}{d_{1}}}\left(t_{3}^{\frac{K d_{1} d_{2}}{p}}\right)^{z} \in N
\end{aligned}
$$

show that

$$
x=\frac{d_{1}}{d_{2}}+\frac{m\left(m-d_{1}\right)}{d_{1} d_{2}} \in \mathbb{Z}, \quad \frac{m}{d_{1}} \in \mathbb{Z}, \quad \frac{d_{2}}{d_{1}} \in \mathbb{Z}
$$

Thus d_{1} is a common divisor of m and d_{2}.
Let $\beta=\alpha^{3}$. Then the following two relations

$$
\begin{aligned}
& \beta\left(t_{1}^{d_{1}} t_{2}^{m} t_{3}^{\ell}\right) \beta^{-1}=\left(t_{1}^{d_{1}} t_{2}^{m} t_{3}^{\ell}\right)^{-1}\left(t_{3}^{\frac{K d_{1} d_{2}}{p}}\right)^{x} \in N, \\
& \beta\left(t_{2}^{d_{2}} t_{3}^{r}\right) \beta^{-1}=\left(t_{2}^{d_{2}} t_{3}^{r}\right)^{-1}\left(t_{3}^{\frac{K d_{1} d_{2}}{p}}\right)^{y} \in N
\end{aligned}
$$

show that

$$
x=\frac{2 p l}{K d_{1} d_{2}}-\frac{p m}{d_{2}}+\frac{p\left(m-d_{1}\right)}{d_{1} d_{2}}, \quad y=\frac{2 p r}{K d_{1} d_{2}}+\frac{p}{d_{1}}
$$

must be integers. Therefore we can get $\frac{2 p l}{K d_{1} d_{2}} \in \mathbb{Z}$ and $\frac{2 p r}{K d_{1} d_{2}} \in \mathbb{Z}$. Since $0 \leq l, r<\frac{K d_{1} d_{2}}{p}$, we have $l=0$ or $\frac{K d_{1} d_{2}}{2 p}$ and $r=0$ or $\frac{K d_{1} d_{2}}{2 p}$. Therefore we have proved the lemma.

Theorem 2. Let N^{m} and $N^{m^{\prime}}$ be normal nilpotent subgroups of π_{i} whose sets of generators are

$$
\begin{aligned}
& N^{m}=\left\langle t_{1}^{d_{1}} t_{2}^{m} t_{3}^{\ell}, t_{2}^{d_{2}} t_{3}^{r}, t_{3}^{\frac{K d_{1} d_{2}}{p}}\right\rangle \\
& N^{m^{\prime}}=\left\langle t_{1}^{d_{1}} t_{2}^{m^{\prime}} t_{3}^{\ell^{\prime}}, t_{2}^{d_{2}} t_{3}^{r^{\prime}}, t_{3}^{\frac{K d_{1} d_{2}}{p}}\right\rangle
\end{aligned}
$$

If $m \neq m^{\prime}$, then N^{m} is not affinely conjugate to $N^{m^{\prime}}$.

Proof. By applying the method used in Theorem 3.3 of [1], we can find the normalizer $N_{\operatorname{Aff}(\mathcal{H})}\left(\pi_{i}\right)$:

$$
\mu(x, y, z, u, v)=\left(\left[\begin{array}{lll}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right],\left(\left[\begin{array}{l}
u \\
v
\end{array}\right],\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)\right)
$$

where $x \in \mathbb{Z}, \quad y \in \mathbb{Z}, \quad z \in \mathbb{R} \quad$ and

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in \mathbb{Z}_{6} \rtimes \mathbb{Z}_{2}=\left\langle\left[\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\right\rangle
$$

Note that $\left[\begin{array}{l}u \\ v\end{array}\right] \in \operatorname{Aut}(\mathcal{H})$ can be evaluated respectively by the elements of $\mathbb{Z}_{6} \rtimes \mathbb{Z}_{2}$. More precisely, the values of $\left[\begin{array}{l}u \\ v\end{array}\right] \in \operatorname{Aut}(\mathcal{H})$ are

$$
\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{l}
\frac{1}{2} \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
\frac{1}{2}
\end{array}\right],\left[\begin{array}{l}
1 \\
\frac{1}{2}
\end{array}\right],\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{c}
\frac{1}{2} \\
0
\end{array}\right] .
$$

For example, we can find

$$
\mu\left(x, y, z, 1, \frac{1}{2}\right)=\left(\left[\begin{array}{lll}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right],\left(\left[\begin{array}{c}
1 \\
\frac{1}{2}
\end{array}\right],\left[\begin{array}{ll}
-1 & 0 \\
-1 & 1
\end{array}\right]\right)\right) \in N_{\operatorname{Aff}(\mathcal{H})}\left(\pi_{i}\right)
$$

Assume that N^{m} is affinely conjugate to $N^{m^{\prime}}$. Then there exists

$$
\mu=\left(\left[\begin{array}{lll}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right],\left(\left[\begin{array}{l}
u \\
v
\end{array}\right],\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)\right) \in N_{\operatorname{Aff}(\mathcal{H})}\left(\pi_{i}\right)
$$

satisfying either

$$
\begin{equation*}
\mu\left(t_{1}^{d_{1}} t_{2}^{m} t_{3}^{\ell}\right) \mu^{-1}=t_{1}^{d_{1}} t_{2}^{m^{\prime}} t_{3}^{\ell^{\prime}}, \quad \mu\left(t_{2}^{d_{2}} t_{3}^{r}\right) \mu^{-1}=t_{2}^{d_{2}} t_{3}^{r^{\prime}} \tag{*}
\end{equation*}
$$

or
$(* *) \quad \mu\left(t_{1}{ }^{d_{1}} t_{2}{ }^{m} t_{3}^{\ell}\right) \mu^{-1}=t_{2}^{d_{2}} t_{3}{ }^{r^{\prime}}, \quad \mu\left(t_{2}^{d_{2}} t_{3}^{r}\right) \mu^{-1}=t_{1}^{d_{1}} t_{2}{ }^{m^{\prime}} t_{3}^{\ell^{\prime}}$.
From (*), we obtain the following relations:

$$
b d_{2}=0, \quad d d_{2}=d_{2}, \quad a d_{1}+b m=d_{1}, \quad c d_{1}+d m=m^{\prime} .
$$

Thus we have

$$
b=0, \quad d=1, \quad a=1, \quad c d_{1}=m^{\prime}-m .
$$

Since

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
c & 1
\end{array}\right] \in \mathbb{Z}_{6} \rtimes \mathbb{Z}_{2},
$$

we have $c=0$ and $m=m^{\prime}$, which is a contradiction. However in ($* *$), we obtain the following relations:

$$
b d_{2}=d_{1}, \quad d d_{2}=m^{\prime}, \quad a d_{1}+b m=0, \quad c d_{1}+d m=d_{2} .
$$

The relation $d d_{2}=m^{\prime}<d_{2}$ induces $m^{\prime}=0$ and $d=0$. Since

$$
c d_{1}=c b d_{2}=d_{2}, \quad b c=1, \quad\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & 0
\end{array}\right] \in \mathbb{Z}_{6} \rtimes \mathbb{Z}_{2},
$$

we have $a=0$ and so $m=0$, which is a contradiction. Therefore we complete the proof.

In the following theorem, we show when affine conjugacy occurs among 4 types of normal nilpotent subgroups $N_{j}(j=1,2,3,4)$.

Theorem 3. Let $N_{j}(j=1,2,3,4)$ be a normal nilpotent subgroup of $\pi_{i}(i=1,2,3,4)$ and isomorphic to Γ_{p}. Then we have the following:
(1) $N_{2} \sim N_{3}$ if and only if $m=0, d_{1}=d_{2}$.
(2) $N_{1} \nsim N_{2}, \quad N_{1} \nsim N_{4}, \quad N_{3} \nsim N_{4}$.

Proof. (1) Suppose that N_{2} is affinely conjugate to N_{3}. Then there exists

$$
\mu=\left(\left[\begin{array}{lll}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right],\left(\left[\begin{array}{l}
u \\
v
\end{array}\right],\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)\right) \in N_{\operatorname{Aff}(\mathcal{H})}\left(\pi_{i}\right)
$$

satisfying either

$$
\begin{equation*}
\mu\left(t_{1}^{d_{1}} t_{2}^{m}\right) \mu^{-1}=t_{1}^{d_{1}} t_{2}^{m} t_{3}^{\frac{K d_{1} d_{2}}{2 p}}, \quad \mu\left(t_{2}^{d_{2}} t_{3}^{\frac{K d_{1} d_{2}}{2 p}}\right) \mu^{-1}=t_{2}^{d_{2}} \tag{*}
\end{equation*}
$$

or
$(* *) \quad \mu\left(t_{1}^{d_{1}} t_{2}^{m}\right) \mu^{-1}=t_{2}^{d_{2}}, \quad \mu\left(t_{2}^{d_{2}} t^{\frac{K d_{1} d_{2}}{2 p}}\right) \mu^{-1}=t_{1}^{d_{1}} t_{2}{ }^{m} t_{3}-\frac{K d_{1} d_{2}}{2 p}$.
From $(*)$, we obtain the following relations:

$$
b d_{2}=0, \quad d d_{2}=d_{2}, \quad a d_{1}+b m=d_{1}, \quad c d_{1}+d m=m
$$

Thus we have $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and $x=\frac{d_{1}}{2 p}$. Note that d_{1} is a divisor of p. Since $\mu \in N_{\mathrm{Aff}(\mathcal{H})}\left(\pi_{i}\right)$, we have $x=\frac{d_{1}}{2 p} \in \mathbb{Z}$, which is a contradiction. However in $(* *)$, we obtain the following relations:

$$
b d_{2}=d_{1}, \quad d d_{2}=m, \quad a d_{1}+b m=0, \quad c d_{1}+d m=d_{2}
$$

The relation $d d_{2}=m<d_{2}$ induces $m=0$ and $d=0$. Thus we have $a=0$ and $b=c=1$. Therefore we have $d_{1}=d_{2}$ and $m=0$.

Conversely, suppose that $m=0$ and $d_{1}=d_{2}$. Then $N_{2} \sim N_{3}$ by using

$$
\left(\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right]\right)\right) \in N_{\operatorname{Aff}(\mathcal{H})}\left(\pi_{i}\right)
$$

(2) Suppose that N_{1} is affinely conjugate to N_{2}. Then there exists $\mu \in$ $N_{\text {Aff(}}(\mathcal{H})\left(\pi_{i}\right)$ satisfying either
(*) $\quad \mu\left(t_{1}{ }^{d_{1}} t_{2}{ }^{m}\right) \mu^{-1}=t_{1}^{d_{1}} t_{2}{ }^{m}, \quad \mu\left(t_{2}^{d_{2}}\right) \mu^{-1}=t_{2}^{d_{2}} t_{3}^{\frac{K d_{1} d_{2}}{2 p}}$,
or

$$
(* *) \quad \mu\left(t_{1}^{d_{1}} t_{2}{ }^{m}\right) \mu^{-1}=t_{2}^{d_{2}} t_{3}^{\frac{K d_{1} d_{2}}{2 p}}, \quad \mu\left(t_{2}^{d_{2}}\right) \mu^{-1}=t_{1}^{d_{1}} t_{2}^{m}
$$

From (*), we obtain that

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad x=-\frac{d_{1}}{2 p}, \quad y=-\frac{m}{2 p} .
$$

Since $\mu \in N_{\text {Aff(}}(\mathcal{H})\left(\pi_{i}\right)$, we have $x=-\frac{d_{1}}{2 p} \in \mathbb{Z}$, which is a contradiction.
From ($* *$), we obtain the following relations:

$$
b d_{2}=d_{1}, \quad d d_{2}=m, \quad a d_{1}+b m=0, \quad c d_{1}+d m=d_{2} .
$$

The relation $d d_{2}=m<d_{2}$ induces $d=0$ and $m=0$. Thus we have

$$
a=0, \quad b=c=1, \quad x=-\frac{d_{1}}{2 p}
$$

Since $\mu \in N_{\operatorname{Aff}(\mathcal{H})}\left(\pi_{i}\right)$, we have $x=-\frac{d_{1}}{2 p} \in \mathbb{Z}$, which is a contradiction. Therefore N_{1} is not affinely conjugate to N_{2}. The other cases can be done similarly.

Note that π_{i} / N is abelian if and only if $N \supset\left[\pi_{i}, \pi_{i}\right]=\left\langle t_{1}, t_{2}, t_{3}^{K}\right\rangle$, where $K=6 n$ for $i=1,3, K=6 n-2$ for $i=2$ and $K=6 n-4$ for $i=4$. Thus we obtain the following result, which is the same as Theorem 3.10 of [1].

Corollary 4. The following table gives a complete list of all free actions(up to topological conjugacy) of finite abelian groups G on \mathcal{N}_{p} which yield an orbit manifold homeomorphic to $\mathcal{H} / \pi_{i},(i=1,2,3,4)$.

$$
\begin{array}{lll}
\text { Group } G & \text { AC classes of normal nilpotent subgroups } \\
\frac{\mathbb{Z}_{\frac{6 K}{p}}}{} & \frac{K}{p} \in \mathbb{N} & N=\left\langle t_{1}, t_{2}, t_{3}^{\frac{K}{p}}\right\rangle
\end{array}
$$

References

1. D. Choi and J. K. Shin, Free actions of finite abelian groups on 3-dimensional nilmanifolds, J. Korean Math. Soc. 42(4) (2005), 795-826.
2. H. Y. Chu and J. K. Shin, Free actions of finite groups on the 3-dimensional nilmanifold, Topology Appl. 144 (2004), 255-270.
3. K. Dekimpe, P. Igodt, S. Kim and K. B. Lee, Affine structures for closed 3-dimensional manifolds with nil-geometry, Quarterly J. Math. Oxford (2) 46 (1995), 141-167.
4. K. Y. Ha, J. H. Jo, S. W. Kim and J. B. Lee, Classification of free actions of finite groups on the 3-torus, Topology Appl. 121(3) (2002), 469-507.
5. J. Hempel, Free cyclic actions of $S^{1} \times S^{1} \times S^{1}$, Proc. Amer. Math. Soc. 48(1) (1975), 221-227.
6. K. B. Lee, J. K. Shin and Y. Shoji, Free actions of finite abelian groups on the 3-Torus, Topology Appl. 53 (1993), 153-175.
7. J. K. Shin, Free actions of finite groups on the 3-dimensional nilmanifold for Type 1, J. Chungcheong Math. Soc. 19(4) (2006), 437-443.
8. S. Wolfram, Mathematica, Wolfram Research, 1993.

Department of Mathematics
Chungnam National University
Daejeon 305-764, Republic of Korea

Department of Mathematics
Chungnam National University
Daejeon 305-764, Republic of Korea
E-mail: jkshin@cnu.ac.kr

[^0]: ** This study was financially supported by research fund of Chungnam National University in 2004

 Received June 26, 2007.
 2000 Mathematics Subject Classifications: Primary 59S25, 57M05.
 Key words and phrases: group actions, Heisenberg group, almost Bieberbach groups, Affine conjugacy.

