• 제목/요약/키워드: finite element method

검색결과 13,329건 처리시간 0.036초

형상최적화 향상을 위한 유한요소의 개선에 관한 연구 (A Study on the Modification of a Finite Element for Improving Shape Optimization)

  • 성진일;유정훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.367-371
    • /
    • 2001
  • In the shape optimization based on the finite element method, the accuracy of finite element analysis of a given structure is important to determine the final shape. In case of a bending dominant problem, finite element solutions by the full integration scheme are not reliable because of the locking phenomenon. Furthermore, in the process of shape optimization, the mesh distortion is large due to the change of the structure outline: therefore, we cannot guarantee the accurate result unless the finite element itself is accurate. We approach to more accurate shape optimization to diminish these inaccuracies by improving the existing finite element. The shape optimization using the modified finite element is applied to a two-dimensional simple beam. Results show that the modified finite element have improved the optimization results.

  • PDF

Dynamically Adaptive Finite Element Mesh Generation Schemes

  • Yoon, Chong-Yul;Park, Joon-Seok
    • 한국전산구조공학회논문집
    • /
    • 제23권6호
    • /
    • pp.659-665
    • /
    • 2010
  • The finite element method(FEM) is proven to be an effective approximate method of structural analysis if proper element types and meshes are chosen, and recently, the method is often applied to solve complex dynamic and nonlinear problems. A properly chosen element type and mesh yields reliable results for dynamic finite element structural analysis. However, dynamic behavior of a structure may include unpredictably large strains in some parts of the structure, and using the initial mesh throughout the duration of a dynamic analysis may include some elements to go through strains beyond the elements' reliable limits. Thus, the finite element mesh for a dynamic analysis must be dynamically adaptive, and considering the rapid process of analysis in real time, the dynamically adaptive finite element mesh generating schemes must be computationally efficient. In this paper, a computationally efficient dynamically adaptive finite element mesh generation scheme for dynamic analyses of structures is described. The concept of representative strain value is used for error estimates and the refinements of meshes use combinations of the h-method(node movement) and the r-method(element division). The shape coefficient for element mesh is used to correct overly distorted elements. The validity of the scheme is shown through a cantilever beam example under a concentrated load with varying values. The example shows reasonable accuracy and efficient computing time. Furthermore, the study shows the potential for the scheme's effective use in complex structural dynamic problems such as those under seismic or erratic wind loads.

FETM을 이용한 다자유도 회전체 시스템의 진동해석

  • 김승현;김영배
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.818-821
    • /
    • 1995
  • A MDOF vibration analysis of the rotor is performed using combined modeling of transfer matrix method and finite element method(FETM). The method combines the advantages of both matrix. Each rotor is modelled using transfer matrix method and treated one element or several ones. The finite element method is applied in composing a system matrix and finding roots. The method used in this is more efficient than conventional finite element method in saving calculation time and provides good results in complex MDOF rotor model.

  • PDF

분할구조기법을 이용한 장방형판의 휨해석에 관한 연구 (A Study on the Bending Analysis of Rectangular Plates by Substructuring Technique)

  • 오숙경;김성용;김일중;이용수
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.65-72
    • /
    • 1997
  • This study is the bending analysis of rectangular plates with 4-sides simply supported by Finite Element Method using substructuring technique. In finite element method, as the more number of finite element, the more dimension of matrix, it is difficult to obtain accuracy solution. In this paper substructuring technique is applied to finite element method in order to reduce the dimension of matrix according to the number of finite element mesh. To validate finite element method using substructuring technique, deflections and moments of rectangular plates by that method is compared with those of references. Considering the symmetry of the plate and load, one fourth of plate is analyzed. Operating time and the error of solutions according to the number of finite element mesh and substructure are compared with each other.

  • PDF

Analysis of Ultrasonic Linear Motor Using the Finite Element Method and Equivalent Circuit

  • Park, Jong-Seok;Joo, Hyun-Woo;Lee, Chang-Hwan;Jung, Hyun-Kyo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제3B권4호
    • /
    • pp.159-164
    • /
    • 2003
  • In this paper, a three-dimensional finite element method and construction of equivalent-circuit for a linear ultrasonic motor are presented. The validity of three-dimensional finite element routine in this paper is experimentally confirmed by analyzing impedance of a piezoelectric transducer. Using this confirmed finite element routine, impedance and vibration mode of a linear ultrasonic motor are calculated. Elliptical motion of contact point between vibrator and rail of the linear ultrasonic motor is shown for determination of contact points. By using the finite element method and analytic equations, characteristics of the linear ultrasonic motor, such as thrust force, speed, losses, powers and efficiency, are calculated. The results are confirmed by experiment. Finally, equivalent circuit parameters of the linear ultrasonic motor are obtained using the three-dimensional finite element method and analytic equations.

대칭 Galerkin 경계요소법을 이용한 유한체 내에 존재하는 임의의 삼차원 균열의 해석 (Analysis of Arbitrary Three Dimensional Cracks in the Finite Body Using the Symmetric Galerkin Boundary Element Method)

  • 박재학;김태순
    • 한국안전학회지
    • /
    • 제19권1호
    • /
    • pp.38-43
    • /
    • 2004
  • Many analysis methods, including finite element method, have been suggested and used for assessing the integrity of cracked structures. In the paper, in order to analyze arbitrary three dimensional cracks, the finite element alternating method is extended. The crack is modeled by the symmetric Galerkin boundary element method as a distribution of displacement discontinuities, which is formulated as singularity-reduced integral equations. And the finite element method is used to calculate the stress values for the uncracked body only. Applied the proposed method to several example problems for planner cracks in finite bodies, the accuracy and efficiency of the method were demonstrated.

유한요소-전달강성계수법에 의한 이산계 곡선보의 자유진동해석 (Free Vibration Analysis of Curved Beams Regarded as Discrete System Using Finite Element-Transfer Stiffness Coefficient Method)

  • 최명수;여동준
    • 동력기계공학회지
    • /
    • 제21권1호
    • /
    • pp.37-42
    • /
    • 2017
  • A curved beam is one of the basic and important structural elements in structural design. In this paper, the authors formulated the computational algorithm for analyzing the free vibration of curved beams using the finite element-transfer stiffness coefficient method. The concept of the finite element-transfer stiffness coefficient method is the combination of the modeling technique of the finite element method and the transfer technique of the transfer stiffness coefficient method. And, we confirm the effectiveness the finite element-transfer stiffness coefficient method from the free vibration analysis of two numerical models which are a semicircle beam and a quarter circle beam.

고분자 유동의 3차원 해석을 위한 새로운 검사 체적 유한 요소법 (A New Control Volume Finite Element Method for Three Dimensional Analysis of Polymer Flow)

  • 이석원;윤재륜
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.461-464
    • /
    • 2003
  • A new control volume finite element method is proposed for three dimensional analysis of polymer flow. Tetrahedral finite element is employed and co-located interpolation procedure for pressure and velocity is implemented. Inclusion of pressure gradient term in the velocity shape functions prevents the checkerboard pressure field from being developed. Vectorial nature of pressure gradient is considered in the velocity shape function so that velocity profile in the limit of very small Reynolds number becomes physically meaningful. The proposed method was verified through three dimensional simulation of pipe flow problem for Newtonian and power-law fluid. Calculated pressure and velocity field showed an excellent agreement with analytic solutions for pressure and velocity. Driven-cavity problem, which is reported to yield checkerboard pressure filed when conventional finite element method is applied, could be solved without yielding checkerboard pressure field when the proposed control volume finite element method was applied. The proposed method could be successfully applied to the three dimensional mold filling problem.

  • PDF

Fuzzy finite element method for solving uncertain heat conduction problems

  • Chakraverty, S.;Nayak, S.
    • Coupled systems mechanics
    • /
    • 제1권4호
    • /
    • pp.345-360
    • /
    • 2012
  • In this article we have presented a unique representation for interval arithmetic. The traditional interval arithmetic is transformed into crisp by symbolic parameterization. Then the proposed interval arithmetic is extended for fuzzy numbers and this fuzzy arithmetic is used as a tool for uncertain finite element method. In general, the fuzzy finite element converts the governing differential equations into fuzzy algebraic equations. Fuzzy algebraic equations either give a fuzzy eigenvalue problem or a fuzzy system of linear equations. The proposed methods have been used to solve a test problem namely heat conduction problem along with fuzzy finite element method to see the efficacy and powerfulness of the methodology. As such a coupled set of fuzzy linear equations are obtained. These coupled fuzzy linear equations have been solved by two techniques such as by fuzzy iteration method and fuzzy eigenvalue method. Obtained results are compared and it has seen that the proposed methods are reliable and may be applicable to other heat conduction problems too.

이차원 탄성 정적 문제를 위한 유한요소법과 경계요소법의 근사 결합 방법 (Approximately Coupled Method of Finite Element Method and Boundary Element Method for Two-Dimensional Elasto-static Problem)

  • 송명관
    • 한국지반신소재학회논문집
    • /
    • 제20권3호
    • /
    • pp.11-20
    • /
    • 2021
  • 본 논문에서는 유한요소법과 경계요소법을 결합하여 기하학적으로 급변 부위가 있는 이차원 탄성 정적 문제에 대하여 효율적이고 정확한 해석 결과를 얻기 위한 유한요소법과 경계요소법의 근사 결합 방법을 제시한다. 이차원 문제의 유한요소로서는 3절점, 4절점 평면응력 요소를 적용하고, 이차원 문제의 경계요소로는 3절점 경계요소를 적용한다. 모델링 단계에서는 우선 전체 해석 대상을 유한요소로 모델링한 후에 기학학적 급변 부위를 경계요소로 모델링 하는데, 유한요소의 모델링을 위하여 정의된 절점을 이용하여 경계요소를 정의한다. 해석 단계에서는 전체 해석 대상에 대하여 유한요소 해석을 우선적으로 수행하고, 이후에 경계요소 해석을 자동으로 수행하는데, 경계부에서의 경계조건은 유한요소 해석 결과인 변위 조건과 응력 조건을 적용한다. 수치예제로서 이차원 탄성 정적 문제인 균열이 있는 평판에 대한 해석 결과를 제시하고 고찰한다.