• Title/Summary/Keyword: finite difference time domain

Search Result 462, Processing Time 0.03 seconds

Runup and Reflection of Waves on Impermeable Slopes of Coastal Structures (불투수성 경사면에서 파의 처오름과 반사)

  • Lee, Cheol-Eung
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.175-185
    • /
    • 2001
  • A numerical model is represented to calculate the reflected waves, the runup of waves and the wave induced velocities on impermeable slopes for the normally incident wave trains of nonlinear monochromatic wave and solitary wave. The finite amplitude shallow water equations with the effects of bottom friction are solved numerically in time domain using an explicit dissipative Lax-Wendroff finite difference method. The numerical model is verified by comparisons with the other numerical results, the measured data and asymptotic results. It is found that the uprushing and downrushing of incident waves may be accurately predicted by the present numerical model. Therefore, the present numerical model can be applicable to swells as well as long waves.

  • PDF

EXTINCTION AND NON-EXTINCTION OF SOLUTIONS TO A FAST DIFFUSIVE p-LAPLACE EQUATION WITH A NONLOCAL SOURCE

  • Han, Yuzhu;Gao, Wenjie;Li, Haixia
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.1
    • /
    • pp.55-66
    • /
    • 2014
  • In this paper, the authors establish the conditions for the extinction of solutions, in finite time, of the fast diffusive p-Laplace equation $u_t=div({\mid}{\nabla}u{\mid}^{p-2}{\nabla}u)+a{\int}_{\Omega}u^q(y,t)dy$, 1 < p < 2, in a bounded domain ${\Omega}{\subset}R^N$ with $N{\geq}1$. More precisely, it is shown that if q > p-1, any solution vanishes in finite time when the initial datum or the coefficient a or the Lebesgue measure of the domain is small, and if 0 < q < p-1, there exists a solution which is positive in ${\Omega}$ for all t > 0. For the critical case q = p-1, whether the solutions vanish in finite time or not depends crucially on the value of $a{\mu}$, where ${\mu}{\int}_{\Omega}{\phi}^{p-1}(x)dx$ and ${\phi}$ is the unique positive solution of the elliptic problem -div(${\mid}{\nabla}{\phi}{\mid}^{p-2}{\nabla}{\phi}$) = 1, $x{\in}{\Omega}$; ${\phi}(x)$=0, $x{\in}{\partial}{\Omega}$. This is a main difference between equations with local and nonlocal sources.

New Scattering Matrix Model for Modeling Ferrite Media Using the TLM Method

  • Zugari, Asmaa;El Adraoui, Soufiane;Yaich, Mohamed Iben;Khalladi, Mohsine
    • ETRI Journal
    • /
    • v.34 no.4
    • /
    • pp.536-541
    • /
    • 2012
  • This paper aims to extend the transmission line matrix method with a hybrid symmetrical condensed node (HSCN) to model ferrite media in the time domain. To take into account the anisotropy and dispersive properties of ferrite media, equivalent current sources are incorporated into supplementary stubs of the original HSCN. The scattering matrix of the proposed HSCN is provided, and the validity of this approach is demonstrated for both transversely and longitudinally magnetized ferrites. Agreement is achieved between the results of this approach and those of the theoretical and the finite-difference time-domain method.

STABILITY OF POSITIVE PERIODIC NUMERICAL SOLUTION OF AN EPIDEMIC MODEL

  • Kim, Mi-Young
    • Korean Journal of Mathematics
    • /
    • v.13 no.2
    • /
    • pp.149-159
    • /
    • 2005
  • We study an age-dependent s-i-s epidemic model with spatial diffusion. The model equations are described by a nonlinear and nonlocal system of integro-differential equations. Finite difference methods along the characteristics in age-time domain combined with finite elements in the spatial variable are applied to approximate the solution of the model. Stability of the discrete periodic solution is investigated.

  • PDF

Optimization of Extremely Low Numerical-Dispersion FDTD Method Based on H(2,4) Scheme for Wideband Analysis of Lossy Dielectric (H(2,4) 기법을 기반으로 한 저분산 FDTD 기법의 손실 매질의 광대역 해석을 위한 최적화 방법)

  • Oh, Ilyoung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.3
    • /
    • pp.225-232
    • /
    • 2018
  • This paper proposed the optimization method of the extremely low numerical-dispersion finite-difference time-domain (ELND-FDTD) method based on the H(2,4) scheme for wideband and extremely accurate electromagnetic properties of lossy material, which has a constant conductivity and relative permittivity. The optimized values of three variables are calculated for the minimum numerical dispersion errors of the proposed FDTD method. The excellent accuracy of the proposed method is verified by comparing the calculated results of three different FDTD methods and the analytical results of the two-dimensional dielectric cylinder scattering problem.

Analysis of Microwave Inverse Scattering Using the Broadband Electromagnetic waves (광대역 전자파를 이용한 역산란 해석 연구)

  • Lee, Jung-Hoon;Chung, Young-Seek
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.169-174
    • /
    • 2005
  • In this paper, we proposed a new algorithm of the inverse scattering for the reconstruction of unknown dielectric scatterers using the finite-difference time-domain method and the design sensitivity analysis. We introduced the design sensitivity analysis based on the gradient for the fast convergence of the reconstruction. By introducing the adjoint variable method for the efficient calculation, we derived the adjoint variable equation. As an optimal algorithm we used the steepest descent method and reconstructed the dielectric targets using the iterative estimation. To verify our algorithm we will show the numerical examples for the two-dimensional $TM^2$ cases.

  • PDF

Finite-Difference Time-Domain Approach for the development of an Equivalent Circuit for a Single Step Microstrip Discontinuity in the Substrate (FDTD 방법을 이용한 단일 계단형 마이크로스트립 기판 불연속의 등가회로 개발)

  • 전중창;김태수;한대현;박위상
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.7
    • /
    • pp.1240-1246
    • /
    • 2000
  • The finite-difference time-domain (FDTD) method is applied to analyze a single step microstrip discontinuity in the substrate, and an equivalent circuit model comprised of two inductors and a capacitor has been developed using the numerical results. The microstrip discontinuity newly introduced in this paper has a thickness change of the substrate in the longitudinal direction with a uniform strip width. The discontinuity can be applied to the feeding circuit design for the patch antennas and interconnections between microwave circuit modules. The simulation results are compared with those computed by HFSS, and two results showed a good agreement. An equivalent circuit developed from the FDTD results, which is accurate within 2.4% in magnitudes of $S_{11}$ and $S_{21}$,can be applied for the computer-aided design of microwave circuits.

  • PDF

Numerical Simulation of Ground-Penetrating Radar Signals for Detection of Metal Pipes Buried in Inhomogeneous Grounds (비균일 지하에 매설된 금속관 탐지를 위한 지하탐사레이다 신호의 수치 모의계산)

  • Hyun, Seung-Yeup
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.1
    • /
    • pp.61-67
    • /
    • 2018
  • The effects of subsurface inhomogeneities on the detection of buried metal pipes in ground-penetrating radar(GPR) signals are investigated numerically. To model the electrical properties of the subsurface inhomogeneities, the continuous random media(CRM) generation technique is introduced. For the electromagnetic simulation of GPR signals, the finite-difference time-domain(FDTD) method is implemented. As a function of the standard deviation and the correlation length of the relative permittivity distribution for a randomly inhomogeneous ground, the GPR signals of the buried metal pipes are compared using numerical simulations. As the subsurface inhomogeneities increase, the GPR signals of the buried pipes are distorted because of the effect of the subsurface clutter.

Analysis of the Transversely fed EMC Microstrip Dipole Array Antenna (급전선과 직교된 전자기결합 마이크로스트립 다이폴 배열안테나의 해석)

  • 손영수;윤현보
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.7 no.2
    • /
    • pp.105-116
    • /
    • 1996
  • The design and analysis of the transversely fed EMC(electromagnetically coupled) microstrip dipole have been accomplished by using the integral equation and MOM(method of moment)in frequency domain in order to find the current distribution of the dipole. In this study, we proposed the possibilities for design and analysis of EMC micro-strip dipole array antenna by means of calculating the current distribution of each dipole directly using the FDTD(finite difference time domain) method. In this case, we applied the formulation which is the finite difference expression of the Maxwell's integral equation. From the current distribution of each dipole, we calculated the far field electric component and showed that the calculation process and running time was reduced with respect to the method which calculates the radiation field with surface electric and magnetic current density.

  • PDF

Analysis of SAR in a Human Head for a Cellular Phone (셀룰라 휴대폰에 의한 인체 두부의 SAR 해석)

  • 이애경;최형도;김진석
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.6
    • /
    • pp.776-787
    • /
    • 1998
  • This paper analyzes the local specific absorption rates (SAR's) averaged over 1 g and 10 g in a human head model in contact with a mobile phone operating at 835 MHz. The used numerical method is a total field finite-difference time-domain (FDTD) technique. The phone was simulated with a conducting box, a plastic case, and a whip antennal composed of a monopole and a helix. The discrete human model of the spatial resolution 3 mm is based on Magnetic Resonance Imaging (MRI), computerized tomography (CT) and anatomical images. The near field and far field and far field patterns were analyzed for extended and retracted phone. The two methods to take the volumes of the weights, 1 g or 10 g in tissue are proposed and compared to offer a reproductive technique for SAR estimations.

  • PDF