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STABILITY OF POSITIVE
PERIODIC NUMERICAL SOLUTION

OF AN EPIDEMIC MODEL

Mi-Young Kim

Abstract. We study an age–dependent s-i-s epidemic model with
spatial diffusion. The model equations are described by a nonlinear
and nonlocal system of integro–differential equations. Finite dif-
ference methods along the characteristics in age-time domain com-
bined with finite elements in the spatial variable are applied to
approximate the solution of the model. Stability of the discrete
periodic solution is investigated.

1. Introduction.

In recent years there has been an interest in modelling the effects
of spatial diffusion on age–dependent population models. A general
account of the spatial dispersion of biological populations was given in
the classic work of Skellam [9]. Later spatial diffusion was introduced
into age–dependent population models by Gurtin [3] and Rotemberg
[8] and then has been investigated by several authors [1,4,5,6,7]. In this
paper we consider a numerical method to approximate the solution of
an s-i-s epidemic model within an age–structured population dynamics
with “random” diffusion. Namely, we consider a population density in
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steady state, which is governed by the following system of integro-
differential equations:

(1.1)

∂v

∂a
− k∆v + µ(a)v = 0, x ∈ Ω, 0 ≤ a < a†, t ≥ 0,

v(x, 0) =
∫ a†

0

β(a)v(x, a)da, x ∈ Ω,

v(x, a) = 0, x ∈ ∂Ω, 0 ≤ a < a†.

Here the maximum age a† is assumed to be finite. The function v(x, a)
denotes the population density of age a > 0 at location x. The non-
negative functions µ and β are the age-specific death rate and the age-
specific birth rate, respectively. The death rate is assumed to satisfy
the following: ∫ a†

0

µ(a) da = +∞.

In this population we consider the spread of a mild disease. Let i(x, t, a)
and s(x, t, a) denote the age specific density of infected and susceptible
individuals, respectively. We assume that the disease does not impart
immunity and that

(1.2) v(x, a) = s(x, t, a) + i(x, t, a).

In this model the disease does not significantly affect the death rate
and µ is assumed to be the same for all subpopulations. We shall also
assume that infected and susceptible individuals interact freely and
randomly. Thus the dynamics are governed by the following system of
the equations:

(1.3)

∂i

∂t
+

∂i

∂a
− k∆i + µ(a)i = γ(a)i{v(x, a)− i},
x ∈ Ω, 0 ≤ a < a†, t ≥ 0,

i(x, t, 0) = q

∫ a†

0

β(a)i(x, t, a)da, x ∈ Ω, t ≥ 0,

i(x, 0, a) = i0(x, a), x ∈ Ω, 0 ≤ a < a†,

i(x, t, a) = 0, x ∈ ∂Ω, 0 ≤ a < a†, t ≥ 0,



Stability of positive periodic solution to an epidemic model 151

where γ(a) is the force of infection and q the vertical transmission
rate, that is, the ratio of infective newborns produced by infectives.
We assume that γ is nonnegative and belong to L∞(0, a†), 0 ≤ q <
1. For the model to make sense we also assume that 0 ≤ i0(x, a) ≤
v0(x, a), 0 ≤ a < a†.

2. A Numerical Method.

We first define some notations to be used in the paper. For 1 ≤ q ≤
∞ and m any nonnegative integer, let

Wm,q(Ω) = {f ∈ Lq(Ω) | Dαf ∈ Lq(Ω) if |α| ≤ m}

denote the Sobolev space endowed with the norm

‖f‖m,q;Ω =
( ∑

|α|≤m

‖Dαf‖q
Lq(Ω)

) 1
q

,

with the usual modification for q = ∞. Let Hm(Ω) = Wm,2(Ω) with
norm ‖ · ‖m;Ω = ‖ · ‖m,2;Ω. Hm

0 (Ω) is the closure of D(Ω) in the norm
‖ ·‖m;Ω, where D(Ω) is the set of infinitely differentiable functions with
compact support in Ω. To take into account the discretization of age
and/or time we shall also find useful the following notations:

‖χn‖`p(Hr) =
( ∑

j≥1

‖χn
j ‖p

Hr∆t

)1/p

,

‖χ‖`q,p(Hr) =
( N∑

n=0

‖χn‖q
`p(Hr)∆t

)1/q

,

where if q = ∞, the sum is replaced by the maximum. We shall use the
same notation to indicate the dualities between Hr

0 (Ω) and H−r(Ω).
We now make some assumptions on the data and solutions of the prob-
lem (1.3). Observe that the initial age–space distribution i0 given in
(1.3) must be nonnegative for biological reasons. Now, let T > 0 be the
final time and let J = [0, a†)× [0, T ]. Let Ω be a bounded domain with
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C2–boundary ∂Ω. We shall assume that the initial–boundary value
problem (1.3) has a unique solution i ∈ C2(J ; H2+ε(Ω)) for some ε,
0 < ε << 1. Now using the divergence theorem we arrive at a weak
form of (1.3)1, (1.3)3: Seek a map i : J → H1

0 (Ω) satisfying

(2.1)
(

∂i

∂t
+

∂i

∂a
,w

)
+k

(
∇i,∇w

)
+(µ(a)i, w) = (γ(a)i(v(x, a)−i), w),

where w ∈ H1
0 (Ω). We shall discretize (2.1) using a finite difference

method of characteristics in the age–time direction and a finite element
method for the spatial variable. Let N be a fixed integer, and let
∆t = T/N , A† = [a†/∆t], and

tn = n∆t, 0 ≤ n ≤ N, aj = j∆t, 0 ≤ j < A†.

We define a directional derivative Dχ of χ along the characteristic
t = a and a finite difference operator D as follows:

Dχ(a, t) = lim
∆t→0

χ(a + ∆t, t + ∆t)− χ(a, t)
∆t

,

and, for j ≥ 1, n ≥ 1,

Dχn
j =

χn
j − χn−1

j−1

∆t
.

We partition Ω into triangles K and denote by Th the resulting mesh
and h the mesh size. We also assume that {Th} is a quasi–uniform
family and that the family {Th} is weakly acute in the sense that

∫

Ω

∇φi · ∇φjdx ≤ 0, 1 ≤ i 6= j ≤ L,

where φi is the canonical piecewise linear function with value 1 at the
node xi and 0 at the remaining nodes, and L is the total number of
nodes. Let Vh ⊂ H1

0 (Ω) be the set of piecewise linear polynomials.
Namely,

(2.2) Vh = {φ ∈ C(Ω̄) | φ|K is linear for each K ∈ Th}.
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Let Πh be the corresponding Lagrange interpolation operator. We
consider the following discrete inner product (·, ·), which uses the vertex
quadrature rule [2]: For ψ, ϕ ∈ V 1

h ,

(ψ,ϕ) :=
∫

Ω

Πh(ψϕ)dx =
∑

K∈Th

1
3
meas (K)

3∑

j=1

(ψϕ)(bK,j),

and for α continuous,

(α∇ψ,∇ϕ) :=
∑

K∈Th

1
3
meas (K)

3∑

j=1

α(bK,j)∇ψ|K · ∇ϕ|K ,

where bK,j , j = 1, 2, 3, are vertices of K. We note that i(x, t, a†) ≡ 0.
Thus we may assume that inA†,h ≡ 0, for n ≥ 1. Then the approxima-
tion scheme we shall analyze is given by seeking inj,h ∈ Vh for n ≥ 1,
1 ≤ j < A†, such that
(2.3)

i0j,h = Phi0(·, aj), 0 ≤ j < A†,(
Dinj,h, w

)
+ k

(∇inj,h,∇w
)

+ (µji
n
j,h, w) + (γjvj(·)inj,h, w) =

(γji
n−1
j,h (2vj(·)− inj,h), w), w ∈ Vh, 1 ≤ j < A†, n ≥ 1,

in0,h =
A†∑

l=0

βji
n
j,h∆t, n ≥ 1,

where Ph is an interpolant such that i0j,h ≥ 0.

3 Discrete maximum principle and comparison results.

If we express inj,h in terms of the canonical basis functions {φj}1≤j≤L,
then we notice that the discrete problem yields to compute inj,h using
in−1
j,h , 0 ≤ j < A†, for given time level n − 1. This in turn amounts

to solve (A† − 2) elliptic problems for each time level n. It essentially
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leads to solve the following linear system for 1 ≤ j < A†, n ≥ 1:

(3.1)

{M + ∆tkA + ∆tµjM + ∆tγjD
j
V M + ∆tγjD

n−1,j
I M}In,j =

MIn−1,j−1 + 2∆tγjD
j
V MIn−1,j , 0 ≤ j < A†, n ≥ 1,

In,0 =
1

1−∆tβ0

A†∑

l=1

∆tIn,lβl, n ≥ 1,

I0,j = Phi0j,h, 0 ≤ j < A†,

where inj,h =
∑L

l=1 In,j
l φl, In,j = (In,j

1 , · · ·, In,j
L )T , Mrs = (φr, φs)h,

Ars = (∇φr,∇φs)h, (Dn,j
I )rs = In,j

r δrs, (Dj
V )rs = vj(xr)δrs.

We now have the following estimate:

Theorem 3.1. 0 ≤ inj,h ≤ vj,h, for 0 ≤ j < A†, n ≥ 0.

We consider the following linear problem:

(3.2)

(
Dzn

j,h, w
)

+ k
(∇zn

j,h,∇w
)

+ (µjz
n
j,h, w) = 0,

w ∈ Vh, 1 ≤ j < A†, n ≥ 1,

zn
0,h =

A†∑

l=0

βjz
n
j,h∆t, n ≥ 1,

z0
j,h = vj,h − i0j,h, 0 ≤ j < A†.

For problem (3.2), we have the following “discrete maximum principle”:

Theorem 3.2.

min {0, min
x∈Ωh

{
zn−j
0,h , z0

j−n,h

} } ≤ zn
j,h ≤ max { 0, max

x∈Ωh

{
zn−j
0,h , z0

j−n,h

} }.

Theorem 3.3. If zn
0,h ≥ C, for some constant C > 0, x ∈ O ⊂ Ωh,

n ≥ N , then there exists a positive constant C(A) for each A < A†,
such that zn

j,h ≥ C(A), for x ∈ Ωh, 0 ≤ j < A, n ≥ N + A†, and

C(A) → 0, as A → A†.

Following comparison results also hold:
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Theorem 3.4. (1) z0
j,h ≤ z0

j,h implies that zn
j,h ≤ zn

j,h.

(2) If µj ≥ µ
j
, βj ≤ β

j
, fj ≤ f

j
, and γj ≤ γ

j
, then zn

j,h ≤ zn
j,h.

Using the discrete maximum principle and comparison results, we
have the following maximum principle for the problem (2.3):

Theorem 3.5. If in0,h ≥ C, for some constant C > 0, x ∈ O ⊂ Ωh,

n ≥ N , then, there exists a positive constant C(A) for each A < A†,
such that inj,h ≥ C(A), for x ∈ Ωh, 0 ≤ j < A, n ≥ N + A†, and

C(A) → 0, as A → A†.

We need the following Lemma for the main result (Theorem 4.7):

Lemma 3.6. Let Oh be a nonempty subset of Ωh. If (λ1
h, w1

h) is the
smallest eigen-pair of the following:

{
(∇w1

h,∇χ) + (λw1
h, χ) = 0, in Oh,

w1
h = 0, on ∂Oh,

then (λ1
h, w1

h) > 0.

We are now ready to state the main result of this section.

Theorem 3.7. Assume that the initial data is fertile. Then inj,h >
0, for x ∈ Ωh, 1 ≤ j < A†, n ≥ N , for sufficiently large N . More
precisely, there exist a positive constant C(A, N) for each A < A†, such
that inj,h > C(A, N), for x ∈ Ωh, 1 ≤ j ≤ A, n ≥ N , for sufficiently

large N , and C(A, N) → 0 as A → A†.

4. Steady state problem.

We now consider the following steady state problem:

(4.1)

∂i

∂a
− k∆i + µ(a)i = γ(a)i{v(x, a)− i}, x ∈ Ω, 0 ≤ a < a†,

i(x, 0) = q

∫ a†

0

β(a)i(x, a)da, x ∈ Ω,

i(x, a) = 0, x ∈ ∂Ω, 0 ≤ a < a†,
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and corresponding discrete problem of the following:
(4.2)(

Dij,h, w
)

+ k
(∇ij,h,∇w

)
+ (µjij,h, w) =(γjij,h(vj(·)− ij,h), w),

w ∈ Vh, 1 ≤ j < A†,

i0,h =
A†∑

l=0

βjij,h∆t.

We note that problem (4.2) is nonlinear and nonlocal, and an iteration
is required to solve them. Now let i

∼j,h ≤ ij,h ≤ ĩj,h be the lower and

upper solutions of (4.2). Consider the following iteration with an initial
guess i

∼
(0)
j,h = i

∼j,h, (̃i(0)j,h = ĩj,h, respectively).

(4.3)

i
∼

(0)
j,h = i

∼j,h, 1 ≤ j < A†,
(
D i
∼

(k)
j,h, w

)
+ k

(∇ i
∼

(k)
j,h,∇w

)
+ (µj i

∼
(k)
j,h, w) + (γjvj(·) i

∼
(k)
j,h, w) =

(γj i
∼

(k−1)
j,h (2vj(·)− i

∼
(k−1)
j,h ), w), w ∈ Vh, 1 ≤ j < A†,

i
∼

(k)
0,h =

A†∑

l=0

βj i
∼

(k)
j,h∆t,

and

(4.4)

ĩ
(0)
j,h = ĩj,h, 1 ≤ j < A†,

(
Dĩ

(k)
j,h, w

)
+ k

(∇ĩ
(k)
j,h,∇w

)
+ (µj ĩ

(k)
j,h, w) + (γjvj(·)̃i(k)

j,h, w) =

(γj ĩ
(k−1)
j,h (2vj(·)− ĩ

(k−1)
j,h ), w), w ∈ Vh, 1 ≤ j < A†,

ĩ
(k)
0,h =

A†∑

l=0

βj ĩ
(k)
j,h∆t.

Noting that G(i) = γji(2vj−i) is monotone increasing in i, we see that
by comparison result,

0 ≤ ĩ
(1)
j,h ≤ ĩ

(0)
j,h ≤ ĩj,h.
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Thus ĩ
(k)
j,h ( i

∼
(k)
j,h, respectively) is decreasing (increasing, respectively) in

the iteration level k . Let ij,h = limk→∞ ĩ
(k)
j,h and ij,h = limk→∞ i

∼
(k)
j,h.

Then i
∼

(k)
j,h ≤ ij,h ≤ ĩ

(k)
j,h.

Based on the monotone property of G, we have the following as-
ymptotic behavior of the solution of the time dependent problem:

Theorem 4.1. Let i
∼j,h and ĩj,h be a pair of lower and upper solu-

tions of (4.2) with ĩj,h ≥ i
∼j,h ≥ 0 and let i

∼
n
j,h and ĩnj,h be the solutions

of (2.3) with i
∼

0
j,h = i

∼j,h and ĩ0j,h = ĩj,h, respectively. Then, we have

the following:

(1) ĩnj,h ( i
∼

n
j,h, respectively) is monotone decreasing (increasing, re-

spectively) in n and ĩnj,h ≥ i
∼

n
j,h.

(2) ij,h = limn→∞ ĩnj,h ≥ ij,h = limn→∞ i
∼

n
j,h and ij,h and ij,h are

the maximal and minimal solutions of (4.2).

(3) i
∼j,h ≤ i0j,h ≤ ĩj,h implies that ij,h ≤ inj,h ≤ ij,h.

(4) If i∗j,h is the unique solution of (4.2) such that ij,h ≤ i∗j,h ≤ ij,h,

then inj,h → i∗j,h as n →∞, whenever i
∼j,h ≤ i0j,h ≤ ĩj,h.

5. Uniqueness and stability of a periodic solution.

In this section we use the results of §4 to show the unique existence
and stability of a non-trivial periodic solution. We assume in this sec-
tion, that the biological parameters µ, β, γ are T ∗–periodic for some
T ∗ > 0 and that v(x, t, a) is a non–trivial T ∗–periodic population den-
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sity. We then consider the following problem:

(5.1)

∂i

∂t
+

∂i

∂a
− k∆i + µ(t, a)i = γ(t, a)i{v(x, t, a)− i},

x ∈ Ω, 0 ≤ a < a†, t ≥ 0,

i(x, t, 0) = q

∫ a†

0

β(t, a)i(x, t, a)da, x ∈ Ω, t ≥ 0,

i(x, t, a) = 0, x ∈ ∂Ω, 0 ≤ a < a†, t ≥ 0,

i(x, t, a) = i(x, t + T ∗, a), x ∈ Ω, 0 ≤ a < a†, t ≥ 0,

We are then interested in finding stable M -periodic endemic solutions.
Namely, we want to find periodic solutions for n ≥ 1, 1 ≤ j < A†, to

(5.2)

i0j,h = Phi0(·, aj), 0 ≤ j < A†,(
Dinj,h, w

)
+ k

(∇inj,h,∇w
)

+ (µn
j inj,h, w) + (γn

j vn
j (·)inj,h, w) =

(γn
j in−1

j,h (2vn
j (·)− inj,h), w), w ∈ Vh, 1 ≤ j < A†, n ≥ 1,

in0,h =
A†∑

l=0

βn
j inj,h∆t, n ≥ 1,

inj,h = in+M
j,h , w ∈ Vh, 1 ≤ j < A†, n ≥ 0.

Following theorem concerns the existence of a maximal M -periodic
solution in the desired range.

Theorem 5.1. There is an M -periodic solution `n
j of (5.2) such

that 0 ≤ `n
j ≤ vj . If there is an M -periodic solution inj of (5.2) such

that 0 ≤ inj ≤ vj , then 0 ≤ inj ≤ `n
j .

Theorem5.2. Any non-trivial M -periodic solution is positive and
there is at most one non-trivial M -periodic solution. Furthermore, it
is asymptotically stable in that range when 0 ≤ i0j ≤ v0

j , if it exists.
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