DOI QR코드

DOI QR Code

Optimization of Extremely Low Numerical-Dispersion FDTD Method Based on H(2,4) Scheme for Wideband Analysis of Lossy Dielectric

H(2,4) 기법을 기반으로 한 저분산 FDTD 기법의 손실 매질의 광대역 해석을 위한 최적화 방법

  • Oh, Ilyoung (Department of Information Electronic Engineering, Dongyang Mirae University)
  • 오일영 (동양미래대학교 전자공학과)
  • Received : 2018.02.02
  • Accepted : 2018.03.13
  • Published : 2018.03.31

Abstract

This paper proposed the optimization method of the extremely low numerical-dispersion finite-difference time-domain (ELND-FDTD) method based on the H(2,4) scheme for wideband and extremely accurate electromagnetic properties of lossy material, which has a constant conductivity and relative permittivity. The optimized values of three variables are calculated for the minimum numerical dispersion errors of the proposed FDTD method. The excellent accuracy of the proposed method is verified by comparing the calculated results of three different FDTD methods and the analytical results of the two-dimensional dielectric cylinder scattering problem.

본 논문은 H(2,4) 기법을 기반으로 한 저분산 유한차분 시간영역법(Finite-Difference Time-Domain: FDTD)을 이용하여 상수 도전율과 비유전율을 갖는 유전체의 광대역 전자기 특성을 정확하게 해석하는 방법을 제안했다. 수치분산오차를 최소화하기 위해서 제안한 FDTD 기법에서 이용하는 세 개의 변수의 최적값을 계산하였다. 잘 알려진 정확한 FDTD 기법들과 제안한 FDTD 방법으로 2차원 원형 유전체 실린더의 광대역 산란 문제를 계산하였고, 그 결과를 이론값과 비교하여 제안한 방법의 우수성을 검증하였다.

Keywords

References

  1. K. Yee, "Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media," IEEE Transactions on Antennas and Propagation, vol. 14, no. 3, pp. 302-307, May 1966. https://doi.org/10.1109/TAP.1966.1138693
  2. R. J. Spiegel, M. B. A. Fatmi, S. S. Stuchly, and M. A. Stuchly, "Comparison of finite-difference time domain SAR calculations with measurements in a heterogeneous model of man," IEEE Transactions on Biomedical Engineering, vol. 36, no. 8, pp. 849-855, Aug. 1989. https://doi.org/10.1109/10.30811
  3. B. Chaudhury, S. Chaturvedi, "Study and optimization of plasma based radar cross section reduction using three-dimensional computations," IEEE Transactions on Plasma Science, vol. 37, no. 11, pp. 2116-2127, Nov. 2009. https://doi.org/10.1109/TPS.2009.2032331
  4. J. C. Ju, H. Y. Lee, D. C. Park, and N. S. Chung, "FDTD analysis of lightning-induced voltages on shielded telecommunication cable with multipoint grounding," Journal of Electromagnetic Engineering and Science, vol. 1, no. 1, pp. 88-94, 2001.
  5. T. Dogaru, C. Le, "SAR images of rooms and buildings based on FDTD computer models," IEEE Transactions on Geoscience and Remote Sensing, vol. 47, no. 5, pp. 1388-1401, May 2009. https://doi.org/10.1109/TGRS.2009.2013841
  6. I. Y. Oh, Y. Hong, and J. G. Yook, "Extremely low dispersion higher order(2, 4) 2-D-FDTD scheme for Maxwell- Boltzmann system," IEEE Transactions on Antennas and Propagation, vol. 61, no. 12, pp. 6100-6106, Dec. 2013. https://doi.org/10.1109/TAP.2013.2281363
  7. I. Y. Oh, Y. Hong, and J. G. Yook, "Extremely low dispersion H(2,4) FDTD scheme for lossy material," Journal of Electromagnetic Engineering and Science, vol. 13, no. 3, pp. 158-164, Sep. 2013. https://doi.org/10.5515/JKIEES.2013.13.3.158
  8. I. S. Koh, H. Kim, J. M. Lee, J. G. Yook, and C. S. Pil, "Novel explicit 2-D FDTD scheme with isotropic dispersion and enhanced stability," IEEE Transactions on Antennas and Propagation, vol. 54, no. 11, pp. 3505-3510, Nov. 2006. https://doi.org/10.1109/TAP.2006.884288
  9. W. T. Kim, I. S. Koh, and J. G. Yook, "3D isotropic dispersion(ID)-FDTD algorithm: Update equation and characteristics analysis," IEEE Transactions on Antennas and Propagation, vol. 58, no. 4, pp. 1251-1259, Apr. 2010. https://doi.org/10.1109/TAP.2010.2041311
  10. W. T. Kim, I. Koh, and J. G. Yook, "3-D isotropic dispersion FDTD algorithm for rectangular grid," IIEEE Antennas and Wireless Propagation Letters, vol. 9, pp. 522-525, 2010. https://doi.org/10.1109/LAWP.2010.2051313
  11. A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Boston, MA, Artech House, 2005.
  12. J. M. Jin, Theory And Computation of Electromagnetic Fields, Hoboken, John Wiley & Sons, 2011.