• Title/Summary/Keyword: film techniques

Search Result 693, Processing Time 0.025 seconds

Thickness and Surface Measurement of Transparent Thin-Film Layers using White Light Scanning Interferometry Combined with Reflectometry

  • Jo, Taeyong;Kim, KwangRak;Kim, SeongRyong;Pahk, HeuiJae
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.236-243
    • /
    • 2014
  • Surface profiling and film thickness measurement play an important role for inspection. White light interferometry is widely used for engineering surfaces profiling, but its applications are limited primarily to opaque surfaces with relatively simple optical reflection behavior. The conventional bucket algorithm had given inaccurate surface profiles because of the phase error that occurs when a thin-film exists on the top of the surface. Recently, reflectometry and white light scanning interferometry were combined to measure the film thickness and surface profile. These techniques, however, have found that many local minima exist, so it is necessary to make proper initial guesses to reach the global minimum quickly. In this paper we propose combing reflectometry and white light scanning interferometry to measure the thin-film thickness and surface profile. The key idea is to divide the measurement into two states; reflectometry mode and interferometry mode to obtain the thickness and profile separately. Interferogram modeling, which considers transparent thin-film, was proposed to determine parameters such as height and thickness. With the proposed method, the ambiguity in determining the thickness and the surface has been eliminated. Standard thickness specimens were measured using the proposed method. Multi-layered film measurement results were compared with AFM measurement results. The comparison showed that surface profile and thin-film thickness can be measured successfully through the proposed method.

Properties of the surface of the CIGS thin films after sulfurization (황화 열처리를 통한 CIGS 광흡수층의 표면 특성 변화 연구)

  • Kim, Ji Hye;Ko, Young Min;Larina, Liudmila;Ahn, Byung Tae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.99.1-99.1
    • /
    • 2010
  • Many efforts on the surface sulfurization of $Cu(InGa)Se_2$ (CIGS)thin films have been reported as techniques to improve CIGS solar cell performance. We have investigated the sulfurization technique using the sulfur vapor. The co-evaporated $Cu(In,Ga)Se_2$ tin film was used for sulfurization. A thin $Cu(In,Ga)(S,Se)_2$ layer was grown on the surface of the CIGS thin film after high-temperature annealing in sulfur vapor. The structural and compositional properties of the thin films were studied by XRD, EDS and AES analysis. The obtained results revealed that the surface modification technique is promising method to S incorporated into CIGS absorber.

  • PDF

A Study on Alignment of Nematic Liquid Crystal by Using Slanted Non-polarized Ultraviolet Light Irradiation on Polyimide Film (폴리이미드막표면위에 경사진 자외선 조사를 이용한 네마틱 액정의 배향에 관한 연구)

  • 서대식;황율연;이보호
    • Electrical & Electronic Materials
    • /
    • v.10 no.5
    • /
    • pp.461-466
    • /
    • 1997
  • In this paper, we developed the new non-rubbing liquid crystal (LC) alignment techniques in the cell with slanted non-polarized ultraviolet (UV) light irradiation on polyimide (PI) film. It is shown that the uniform alignment for nematic (N) LC is obtained by using slanted non-polarized UV light irradiation on PI surface. We successfully obtained that the pretilt angle of NLC is generated about 3.3 degree in the cell with slanted non-polarized UV light irradiation with 70 degree on PI surface, for the first time. It is considered that the pretilt angle generation in NLC is attributed to interaction between the LC molecular and the PI, which is broken the polymer by slanted non-polarized UV irradiation. Therefore, we concluded that the uniform LC alignment is attributed to anisotropic dispersion force due to photo depolymerization with slanted non-polarized UV light irradiation on PI surface.

  • PDF

CIGS Thin Film Solar Cells by Electrodeposition

  • Saji, Viswanathan S.;Lee, Sang-Min;Lee, Chi-Woo
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.2
    • /
    • pp.61-70
    • /
    • 2011
  • Thin film solar cells with chalcopyrite $CuInSe_2/Cu(In,Ga)Se_2$ absorber materials, commonly known as "CIS/CIGS solar cells" have recently attracted significant research interest as a potential alternative energy-harvesting system for the next generation. Among the different deposition techniques available for the CIGS absorber layer, electrodeposition is an effective and low cost alternative to vacuum based deposition methods. This article reviews progress in the area of CIGS solar cells with an emphasis on electrodeposited absorber layer. Existing challenges in fabrication of stoichiometric absorber layer are highlighted.

Preparation and Characterization of Ultra Thin TaN Films Prepared by RF Magnetron Sputtering

  • Reddy, Akepati Sivasankar;Jo, Hyeon-Cheol;Lee, Gi-Seon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.32.1-32.1
    • /
    • 2011
  • Ultra thin tantalum nitride (TaNx) films with various thicknesses (10 nm to 40 nm) have been deposited by rf magnetron sputtering technique on glass substrates. The as deposited films were systematically characterized by several analytical techniques such as X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, atomic force microscopy, UV-Vis-NIR double beam spectrophotometer and four point probe method. From the XRD results, the as deposited films are in amorphous nature, irrespective of the film thicknesses. The films composition was changed greatly with increasing the film thickness. SEM micrographs exhibited the densely pack microstructure, and homogeneous surface covered by small size grains at lower thickness deposited films. The surface roughness of the films was linearly increases with increasing the films thickness, consequently the transmittance decreased. The absorption edge was shifted towards higher wavelength as the film thickness increases.

  • PDF

Fabrication & Properties of Field Emitter Arrays using the Mold Method for FED Application (Mold 법에 의해 제작된 FED용 전계에미터어레이의 특성 분석)

  • ;;;;K. Oura
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.347-350
    • /
    • 2001
  • A typical Mold method is to form a gate electrode, a gate oxide, and emitter tip after fabrication of mold shape using wet-etching of Si substrate. In this study, however, new Mold method using a side wall space structure is used in order to make sharper emitter tip with a gate electrode. Using LPCVD(low pressure chemical vapor deposition), a gate oxide and electrode layer are formed on a Si substrate, and then BPSG(Boro phospher silicate glass) thin film is deposited. After, the BPSG thin film is flowed into a mold as high temperature in order to form a sharp mold structure. Next TiN thin film is deposited as a emitter tip substance. The unfinished device with a glass substrate is bonded by anodic bonding techniques to transfer the emitters to a glass substrate, and Si substrate is etched using KOH-deionized water solution. Finally, we made sharp field emitter array with gate electrode on the glass substrate.

  • PDF

Fabrication of Screen Printed Organic Thin-Film Transistors

  • Yu, Jong-Su;Jo, Jeong-Dai;Kim, Do-Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.629-632
    • /
    • 2008
  • Printed organic thin-film transistors (OTFTs) were used in the fabrication of a screen- printed gate, source and drain electrodes on flexible plastic substrates using silver pastes, a coated polyvinylphenol dielectrics, and jetted bis(triisopropyl-silylethynyl) pentacene (TIPS-pentacene) organic semiconductor. The OTFTs printed using screen printing and soluble processes made it was possible to fabricate a printed OTFT with a channel length as small as $13\;{\mu}m$ on plastic substrates; this was not possible using previous traditional printing techniques.

  • PDF

A Study on the Application of Anti-Corrosion Techniques on the Surface of Oxygen Free Copper (무산소동의 표면부식 방지기술 적용에 관한 연구)

  • Joo, Hyung-Goun;Lee, Dae-Young;Zhang, Da Quan;Lee, Kang-Yong;Al-Hanash, Essam Khamis Ibrahim
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.4
    • /
    • pp.425-429
    • /
    • 2009
  • The protection for copper tarnish was developed by surface treatment method and volatile corrosion inhibiting (VCI) technology. The performance of surface treatment and VCI material is also examined in simulated test environment. Benzotriazole (BTAH) solution that contained molybdate showed best performance than others. Usage of VCI materials with surface treatment was more effective. The protection film foamed on the surface of copper was investigated by auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS). Molybdate does not participate in the formation of the protective film but promotes the passivation effect. This facilitates the stabilization of the cuprous oxide film, and strengthens the adsorption of BTAH.

Preparation and Holographic Recording of Fluorescent Photopolymer Films Containing Anthracene Polymer for Security

  • Park, Tea-Hoon;Kim, Yoon-Jung;Kim, Jeong-Hun;Kim, Eun-Kyoung
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.305-309
    • /
    • 2010
  • Photopolymer films containing fluorescent anthracene polymer, polymethyleneanthracene (PMAn), were prepared with different concentrations of PMAn for holographic recording useful for security documents. The fluorescent photopolymer film showed enhanced fluorescent intensity due to the micro-separation which arose from grating formation and diffusion during photopolymerization. Experimental values of diffraction efficiency were well matched to the simulated values for photopolymers having different PMAn concentrations. Holography patterning was carried out using the fluorescent photopolymer under a photo-mask. A grating was confirmed using microscope techniques in the recorded area under the pattern. Importantly the recorded area showed enhanced fluorescence compared to the unrecorded part, allowing fluorescence patterns at micro scale along with the submicron grating pattern. The fluorescence pattern recorded on the photopolymer film provides additional readability of holographic reading and thus is useful for secure recording and reading of information.

Accurate Measurement of THz Dielectric Constant Using Metamaterials on a Quartz Substrate

  • Park, Sae June;Ahn, Yeong Hwan
    • Current Optics and Photonics
    • /
    • v.1 no.6
    • /
    • pp.637-641
    • /
    • 2017
  • We present dielectric constant measurements of thin films using THz metamaterials fabricated on a quartz substrate. The resonance shifts of the metamaterials exhibit saturation behavior with increasing film thickness. The saturation frequency shift varies with the real part of the dielectric constant, from which the numerical expression for the particular metamaterial design was extracted. We first performed finite-difference time-domain simulations to find an explicit relationship between the saturated frequency shift and the dielectric constant of a thin film, which was confirmed by the experimental results from conventional techniques. In particular, the quartz substrate enables us to determine their values more accurately, because of its low substrate index. As a result, we extracted the dielectric constants of various films whose values have not been addressed previously without precise control of the film thickness.