• 제목/요약/키워드: film bulk acoustic wave resonator (FBAR)

검색결과 34건 처리시간 0.031초

표면 마이크로머시닝을 이용한 압전 박막 공진기 제작 (Film Bulk Acoustic Wave Resonator using surface micromachining)

  • 김인태;박은권;이시형;이수현;이윤희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집
    • /
    • pp.156-159
    • /
    • 2002
  • Film Bulk Acoustic wave Resonator (FBAR) using thin piezoelectric films can be fabricated as monolithic integrated devices with compatibility to semiconductor process, leading to small size, low cost and high Q RF circuit elements with wide applications in communications area. This paper presents a MMIC compatible Suspended FBAR using surface micromachining. It is possible to make Si$_3$N$_4$/SiO$_2$/Si$_3$N$_4$membrane by using surface micromachining and its good effect is to remove the substrate silicon loss. FBAR was made on 2$\mu\textrm{m}$ multi-layered membrane using CVD process. According to our result, Fabricated film bulk acoustic wave resonator has two adventages. First, in the respect of device Process, our Process of the resonator using surface micromachining is very simple better than that of resonator using bull micromachining. Second, because of using the multiple layer, thermal expansion coefficient is compensated, so, the stress of thin film is reduced.

  • PDF

ZnO압전박막을 이용한 FBAR에 대한 연구 (The Study of membrane structure for FBAR and the deposition of ZnO piezoelectric thin film)

  • 임석진;김종성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 추계학술대회 논문집 Vol.15
    • /
    • pp.358-361
    • /
    • 2002
  • 체적파 박막형 공진기 (FBAR: Film Bulk Acoustic wave Resonator)소자를 제조하여, 박막의 c축 우선 배향성을 조절하는 것이 FBAR 소자 특성을 확인하였다. 본 연구에서는 MEMS 공정에 의해 Membrane 구조의 FBAR(Film Bulk Acoustic wave Resonator) 소자를 구현하고자 하였다. 이를 위해 Si 기판을 Back-etching 하여 membrane 구조를 제작하였고 압전층으로 ZnO을 Sputtering 공정에 의해 증착 후, 공정 조건에 따른 우선 배향성을 관찰하였다.

  • PDF

밴드패스필터 구현을 위한 압전박막공진기 제작 (Film Bulk Acoustic Wave Resonator for Bandpass Filter)

  • 김인태;박윤권;이시형;이윤희;이전국;김남수;주병권
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제51권12호
    • /
    • pp.597-600
    • /
    • 2002
  • Film Bulk Acoustic wave Resonator (FBAR) using thin piezoelectric films can be made as monolithic integrated devices with compatibility to semiconductor process, leading to small size and low cost, high Q RF circuit elements with wide applications in communications area. This paper presents a MMIC compatible suspended FBAR using surface micromachining. Membrane is composed $Si_3N_4SiO_2Si _3N_4$ multi layer and air gap is about 50${\mu}{\textrm}{m}$. Firstly, We perform one dimensional simulation applying transmission line theorem to verify resonance characteristic of the FBAR. Process of the FBAR is used MEMS technology. Fabricated FBAR resonate at 2.4GHz, $K^2_{eff}$ and Q are 4.1% and 1100.

Dependence of Resonance Characteristics on Thermal Annealing in ZnO-Based FBAR Devices

  • Mai Linh;Yim Mun-Hyuk;Yoon Gi-Wan;Kim Dong-Hyun
    • Journal of information and communication convergence engineering
    • /
    • 제2권3호
    • /
    • pp.149-152
    • /
    • 2004
  • In this paper, we present the film bulk acoustic resonator (FBAR) devices fabricated by considering the effects of annealing temperature on zinc oxide (ZnO) film growth characteristics. In order to determine the annealing temperature and annealing time at which the ZnO film can have good material properties, the several resonators containing ZnO layers were fabricated and annealed at various temperatures from $27^{\circ}C\;to\;300^{\circ}C$ in Ar gas ambient. The effects of the annealing temperature and annealing time on the ZnO film properties were comprehensively studied in order to further improve the resonance characteristics of FBAR resonators.

압전층의 2단 증착법을 이용한 체적 음향파 박막형 공진기의 제작과 성능향상에 관한 연구 (A Study of the Fabrication and Enhancement of Film Bulk Acoustic Wave Resonator using Two-Step Deposition Method of Piezoelectric Layer)

  • 박성현;추순남;이능헌
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제54권7호
    • /
    • pp.308-314
    • /
    • 2005
  • The 2 GHz film bulk acoustic wave resonator(FBAR), one of the most necessary device of the next generation mobile communication system, consisted of solidly mounted resonator(SMR) structure using Brags reflector, was researched in this paper The FBAR applied SiO$_{2}$ and W had large difference of the acoustic impedance to reflector Al to electrode and ZnO to piezoelectric layer. Specially, the FBAR applied the two-step deposition method to improve the c-axis orientation and increase reproducibility of the fabrication device had good performance. The electrical properties of plasma such as impedance, resistance, reactance, $V_{pp},\;I{pp}$, VSWR and phase difference of voltage and current, was analyzed and measured by RF sensor with the variable experiment process factors such as gas ratio, RF power and base vacuum level about concerning the thickness, c-axis orientation, adhesion and roughness. The FBAR device about the optimum condition resulted reflection loss(S$_{11}$) of -17 dB, resonance frequency of 1.93 GHz, electric-mechanical coefficient(k$_{eff}$) of 2.38 $\%$ and Qualify factor of 580. It was seen better qualify than the common dielectric filter at present and expected on business to the filter device of 2 GHz bandwidth with the MMIC technology.

Flexible 마이크로시스템을 위한 압전 박막 공진기의 설계 및 제작 (Design and fabrication of film Bulk Acoustic Resonator for flexible Microsystems)

  • 강유리;김용국;김수원;주병권
    • 한국전기전자재료학회논문지
    • /
    • 제16권12S호
    • /
    • pp.1224-1231
    • /
    • 2003
  • This paper reports on the air-gap type thin film bulk acoustic wave resonator(FBAR) using ultra thin wafer with thickness of 50$\mu\textrm{m}$. It was fabricated to realize a small size devices and integrated objects using MEMS technology for flexible microsystems. To reduce a error of experiment, MATLAB simulation was executed using material characteristic coefficient. Fabricated thin FBAR consisted of piezoelectric film sandwiched between metal electrodes. Used piezoelectric film was the aluminum nitride(AlN) and electrode was the molybdenum(Mo). Thin wafer was fabricated by wet etching and dry etching, and then handling wafer was used to prevent damage of FBAR. The series resonance frequency and the parallel frequency measured were 2.447㎓ and 2.487㎓, respectively. Active area is 100${\times}$100$\mu\textrm{m}$$^2$.Q-factor was 996.68 and K$^2$$\_$eff/ was 3.91%.

SOI 웨이퍼를 이용한 압전박막공진기 제작 (Monolithic film Bulk Acoustic Wave Resonator using SOI Wafer)

  • 김인태;김남수;박윤권;이시형;이전국;주병권;이윤희
    • 한국전기전자재료학회논문지
    • /
    • 제15권12호
    • /
    • pp.1039-1044
    • /
    • 2002
  • Film Bulk Acoustic Resonator (FBAR) using thin piezoelectric films can be made as monolithic integrated devices with compatibility to semiconductor process, leading to small size, low cost and high Q RF circuit elements with wide applications in communications area. This paper presents an MMIC compatible suspended FBAR using SOI micromachining. It is possible to make a single crystal silicon membrane using a SOI wafer In fabricating active devices, SOI wafer offers advantage which removes the substrate loss. FBAR was made on the 12㎛ silicon membrane. Electrode and Piezoelectric materials were deposited by RF magnetron sputter. The maximum resonance frequency of FBAR was shown at 2.5GHz range. The reflection loss, K$^2$$\_$eff/, Q$\_$serise/ and Q$\_$parallel/ in that frequency were 1.5dB, 2.29%, 220 and 160, respectively.

시간 영역 유한 차분법(FDTD)을 이용한 마이크로파 대역의 압전 박막 공진기 해석 (Finite Difference Time Domain Analysis for Film Bulk Acoustic Wave Resonator used in Microwave Region)

  • 송영민;정재호;이용현;이정희;최현철
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 추계종합학술대회 논문집(1)
    • /
    • pp.489-492
    • /
    • 2000
  • Film Bulk Acoustic Wave Resonator(FBAR) used in microwave region was analyzed with Finite Difference Time-Domain Methods(FDTD) in this paper. FBAR have been analyzed with one dimensional Mason model analysis or Finite Element methods(FEM), but the first couldn't analyze effect of area variation and spurious characteristics, the second had difficulty in element separation because of thin electrode. So in this paper FBAR was analyzed by Finite Difference Time-Domain Methods and it's results were transformed to frequency domain using Discrete Fourier Transform.

  • PDF

FBAR 응용을 위한 ZnO 압전 박막의 증착 특성에 관한 연구 (A Study on the Deposition Characteristics of ZnO Piezoelectric Thin film Bulk Acoustic Resonator)

  • 최승혁;김종성
    • 한국전기전자재료학회논문지
    • /
    • 제16권8호
    • /
    • pp.716-722
    • /
    • 2003
  • ZnO thin films were deposited on Al and Pt electrodes by an RF reactive sputtering system for the fabrication of FBAR (film bulk acoustic wave resonator), and the effect of thermal treatment temperature on their c-axis preferred orientation was investigated. SEM experiments show that columnar structure of ZnO thin films were grown with c-axis normal to electrode material, and XRD experiments show that both ZnO films were grown with (002) plane preferred orientation, but larger diffraction peak was observed with Pt electrode. The peak intensity increased with higher thermal treatment temperature, but c-axis preferred orientation was diminished. The surface roughness of Al thin film was higher than that of Pt, and these affect the surface roughness of ZnO film deposited on the electrode. Though the preferred orientation with respect to Pt(111) plane was improved with higher thermal treatment temperature, this could not improve the c-axis orientation of ZnO film.

AlN 박막을 이용한 5.2GHz Wireless Local Area Network용 박막형 체적탄성파 공진기의 제조 및 특성 (Fabrication and Characteristics of Film Bulk Acoustic Wave Resonator for Wireless Local Area Network Using AlN Thin Film)

  • 한상철;한정환;이전국;이시형
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2003년도 춘계학술발표강연 및 논문개요집
    • /
    • pp.56-56
    • /
    • 2003
  • 최근 정보통신 분야의 급격한 발달로 인하여 무선통신에 사용되는 주파수 영역 또한 계속 높아짐에 따라 대역통과 필터 소자의 삽입 손실, 소비 전력, 크기, MMIC화에 대한 많은 연구가 진행되고 있다 압전 현상을 이용한 박막형 공진기가 이러한 요구를 충족시키고, 현재의 SAW filter를 대체할 소자로 떠오르고 있다. 본 실험에서는 단결정 미세 구조를 만들 수 있고, 압전 효과 또한 우수하며, Surface Micromachining보다 비교적 제조 공정이 간단하고 선택적 에칭이 가능한 Bulk Micromachining을 이용하여 Si$_3$N$_4$ Membrane을 이용한 중심주파수 5.2GHz인 두께 진동모드 Film Bulk Acoustic Wave Resonator(FBAR)를 제작하고 공진기의 고주파 특성을 평가하였다. Membrane구조 형성을 위해 Backside면인 Si$_3$N$_4$, Si은 RIE(Reactive Ion Etching)와 선택적 에칭용액인 KOH로 각각 에칭하여 Membrane을 갖는 구조로 중심주파수 5.2GHz인 두께 진동모드 FBAR를 설계 및 제조하였다. 체적 탄성파 공진 현상은 r.f Magnetron Sputtering법으로 증착한 AIN 압전박막과 Mo전극으로부터 발생 가능하였다. 본 연구에서는 0.9$\mu\textrm{m}$-Si$_3$N$_4$ Membrane을 이용해 FBAR를 제작/평가하고, RIE을 통해 Membrane을 제거해 가면서 공진기의 특성 즉, Quality factor와 유효전기기계결합계수(K$_{eff}$) 및 S parameter특성을 비교 측정해 보았다. 측정해본 결과 Membrane Free일때가 훨씬더 공진 특성이 우수함을 볼 수 있다

  • PDF