• Title/Summary/Keyword: field-emission scanning electron microscopy

Search Result 686, Processing Time 0.028 seconds

Microstructure of the Antennal Sensilla in the Millipede Anaulaciulus koreanus koreanus (Julida: julidae) (계림갈퀴노래기(Anaulaciulus koreanus koreanus) 촉각 감각모의 미세구조)

  • Chung, Kyung-Hwun;Moon, Myung-Jin
    • Applied Microscopy
    • /
    • v.39 no.2
    • /
    • pp.141-147
    • /
    • 2009
  • The antennae of millipedes have a prominent function in detecting various types of environmental stimuli, and structural modification of the antennae is closely associated with the degree of sense recognition. Although the biological significance of the antennal sensillae to millipedes are widely understood, the structure and function of the antennal sensillae are still not clear and more precise analysis is required. We have analysed the ultrastructural characteristics of the antennal sensillae in a millipede Anaulaciulus koreanus koreanus using field emission scanning electron microscopy (FESEM). According to their morphological and substructural features, we could identify three different types of antennal sensillae as follows: trichoid sensilla (TS), chaetiform sensilla (CS) and basiconic sensilla (BS). The TS on the articles are long, blunt-tipped, almost straight hairs with deep longitudinal grooves in their lower parts whereas, the CS are long, sickleshaped bristles with longitudinal grooves acuminating toward the tip. The BS can be subdivided further into three subtypes which are the large-sized basiconic sensilla ($BS_1$), the small-sized basiconic sensillae ($BS_2$) and the spiniform basiconic sensillae ($BS_3$). The BS between the terminal segment and distal margins of the other segments are clearly discriminated in this species.

Fine Structure of the Antennal Sensilla of the Millipede Oxidus gracilis(Polydesmida: Paradoxomatidae) (고운까막노래기(Oxidus gracilis) 안테나 감각모의 미세구조)

  • Chung, Kyung-Hwun;Moon, Myung-Jin
    • Applied Microscopy
    • /
    • v.37 no.4
    • /
    • pp.231-238
    • /
    • 2007
  • Although the biological significance of the antennal sensillae to millipedes are widely understood, the structure and function of the antennal sensillae are still not clear and more precise analysis is required. Thus, this study initiate to reveal the fine structural characteristics of various sensory receptors on the antennae of millipede Oxidus gracilis were observed with field emission scanning electron microscopy(FESEM). The antennae generally include eight segments, called articles. On the surface of the antennae, there are a variety of sensory receptors which include olfactory and mechanical receptors. We could identify four different types of antennal sensillae in O. gracilis as follows: apical cone sensilla, trichoid sensilla, chatiform sensilla and basiconic sensilla. The most prominent is four large spital cone sensillae on distal tip of the 8th article. Both of trichoid and chaetiform sensillae are abundantly observed at the most of antennal articles. These sharply pointed structures are inclined and slightly curved toward the apex of the sensilla. The basiconic sensilla are further divided into three subtypes: large basiconic sensilla($Bs_1$), small basiconic sensilla($Bs_2$) and spiniform sensilla($Bs_3$). The $Bs_1$ is located at the 5th and 6th articles, while the $Bs_2\;and\;Bs_3 can be seen at the 5th and 7th articles, respectively.

Effects of Growth Conditions on Properties of ZnO Nanostructures Grown by Hydrothermal Method (수열합성법으로 성장된 ZnO 나노구조의 성장조건에 따른 특성)

  • Cho, Min-Young;Kim, Min-Su;Kim, Ghun-Sik;Choi, Hyun-Young;Jeon, Su-Min;Yim, Kwang-Gug;Lee, Dong-Yul;Kim, Jin-Soo;Kim, Jong-Su;Lee, Joo-In;Leem, Jae-Young
    • Korean Journal of Materials Research
    • /
    • v.20 no.5
    • /
    • pp.262-266
    • /
    • 2010
  • ZnO nanostructures were grown on an Au seed layer by a hydrothermal method. The Au seed layer was deposited by ion sputter on a Si (100) substrate, and then the ZnO nanostructures were grown with different precursor concentrations ranging from 0.01 M to 0.3M at $150^{\circ}C$ and different growth temperatures ranging from $100^{\circ}C$ to $250^{\circ}C$ with 0.3 M of precursor concentration. FE-SEM (field-emission scanning electron microscopy), XRD (X-ray diffraction), and PL (photoluminescence) were carried out to investigate the structural and optical properties of the ZnO nanostructures. The different morphologies are shown with different growth conditions by FE-SEM images. The density of the ZnO nanostructures changed significantly as the growth conditions changed. The density increased as the precursor concentration increased. The ZnO nanostructures are barely grown at $100^{\circ}C$ and the ZnO nanostructure grown at $150^{\circ}C$ has the highest density. The XRD pattern shows the ZnO (100), ZnO (002), ZnO (101) peaks, which indicated the ZnO structure has a wurtzite structure. The higher intensity and lower FWHM (full width at half maximum) of the ZnO peaks were observed at a growth temperature of $150^{\circ}C$, which indicated higher crystal quality. A near band edge emission (NBE) and a deep level emission (DLE) were observed at the PL spectra and the intensity of the DLE increased as the density of the ZnO nanostructures increased.

MICROSTRUCTURE AND ELECTROCHEMICAL BEHAVIORS OF EQUIATOMIC TiMoVCrZr AND Ti-RICH TiMoVCrZr HIGH-ENTROPY ALLOYS FOR METALLIC BIOMATERIALS

  • HOCHEOL SONG;SEONGI LEE;KWANGMIN LEE
    • Archives of Metallurgy and Materials
    • /
    • v.65 no.4
    • /
    • pp.1317-1322
    • /
    • 2020
  • The present study investigated various thermodynamic parameters, microstructures and electrochemical behaviors of TiMoVCrZr and Ti-rich TiMoVCrZr high-entropy alloys (HEAs) prepared by vacuum arc remelting. The microstructures of the alloys were analyzed using X-ray diffraction (XRD) analysis, field emission scanning electron microscopy (FE-SEM), and potentiodynamic polarization tests. The determined thermodynamic values of the Ω-parameter and the atomic size difference (δ) for the HEAs were determined to be in the range of Ω ≥ 1.1, and δ ≤ 6.6% with valance electron configuration (VEC) ≤ 5.0, suggesting the HEAs were effective at forming solid solutions. XRD patterns of the equiatomic Ti20Mo20V20Cr20Zr20 HEA revealed four phases consisting of the body centered cubic1 (BCC1), BCC2, hexagonal close-packed (HCP), and intermetallic compound Cr2Zr phases. Three phases were observed in the XRD patterns of Ti-rich Ti40Mo15V15Cr15Zr15 (BCC, HCP, and Cr2Zr) and a single BCC phase was observed in Ti-rich Ti60Mo10V10Cr10Zr10 HEAs. The backscattered-electron (BSE) images on the equiatomic Ti20Mo20V20Cr20Zr20 HEA revealed BCC and HCP phases with Cr2Zr precipitates, suggesting precipitation from the HCP solid solution during the cooling. The micro-segregation of Ti-rich Ti60Mo10V10C10Zr10 HEAs appeared to decrease remarkably. The alloying elements in the HEAs were locally present and no phase changes occurred even after additional HIP treatment. The lowest current density obtained in the polarization potential test of Ti-rich Ti40Mo15V15Cr15Zr15 HEA was 7.12×10-4 mA/cm2 was obtained. The studied TiMoVCrZr HEAs showed improved corrosion characteristics as compared to currently available joint replacement material such as ASTM F75 alloy.

The Study on the Improvement of Piezoelectric and Electrical Characteristics of Bi0.5(Na0.78K0.22)0.5TiO3 Ceramics Modified by the La-based ABO3 Pervskite Structure (La 기반의 ABO3 구조를 갖는 첨가물에 따른 Bi0.5(Na0.78K0.22)0.5TiO3의 압전 및 전기적인 특성 향상 연구)

  • Lee, Ku Tak;Park, Jung Soo;Yun, Ji Sun;Cho, Jeong Ho;Jeong, Young Hun;Paik, Jong Hoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.11
    • /
    • pp.707-711
    • /
    • 2014
  • The $0.99Bi_{0.5}(Na_{0.78}K_{0.22})_{0.5}TiO_3-0.01LaAlO_3$, $0.01LaMnO_3$ or $0.01LaFeO_3$ (0.99BNKT-0.01LA, 0.01LM or 0.01LF) ceramics were prepared by a conventional mixed mothod. The structure and morphology of the lead free ceramics were characterized by XRD (X-ray diffraction) and FE-SEM (field emission scanning electron microscopy). XRD results indicated that the BNKT ceramics modified by LA, LM or LF induced a transition from a ferroelectric tetragonal to a non-polar pseudo-cubic phase, leading to decrease in the remnant polarization ($P_r$) and coercive field ($E_c$) in the P-E hysterisis loops. The effects of the BNKT ceramics modified by La-based $ABO_3$ pervskite structure on the electric-field induced strain were investigated, and the largest normalized unipolar strain ($S_{max}/E_{max}$) was found in BNKT-0.01LF ceramic.

Microfabrication of submicron-size hole for potential held emission and near field optical sensor applications (전계방출 및 근접 광센서 응용을 위한 서브 마이크론 aperture의 제작)

  • Lee, J.W.;Park, S.S.;Kim, J.W.;M.Y. Jung;Kim, D.W.
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.2
    • /
    • pp.99-101
    • /
    • 2000
  • The fabrication of the submicron size hole has been interesting due to the potential application of the near field optical sensor or liquid metal ion source. The 2 micron size dot array was photolithographically patterned. After formation of the V-groove shape by anisotropic KOH etching, dry oxidation at $1000^{\circ}C$ for 600 minutes was followed. In this procedure, the orientation dependent oxide growth was performed to have an etch-mask for dry etching. The reactive ion etching by the inductively coupled plasma (ICP) system was performed in order to etch ~90 nm $SiO_2$ layer at the bottom of the V-groove and to etch the Si at the bottom. The negative ion energy would enhance the anisotropic etching by the $Cl_2$ gas. After etching, the remaining thickness of the oxide on the Si(111) surface was measured to be ~130 nm by scanning electron microscopy. The etched Si aperture can be used for NSOM sensor.

  • PDF

A-site Non-stoichiometric Effects of Bi0.5(Na0.78K0.22)0.5TiO3 Ceramics on the Dielectric and Electrical Properties (Bi0.5(Na0.78K0.22)0.5TiO3 세라믹스의 A-site 비화학양론이 유전 및 전기적 특성에 미치는 영향)

  • Park, Jung Soo;Lee, Ku Tak;Yun, Ji Sun;Cho, Jeong Ho;Jeong, Young Hun;Paik, Jong Hoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.12
    • /
    • pp.803-808
    • /
    • 2014
  • $Bi_{0.5+x}(Na_{0.78}K_{0.22})_{0.5-3x}TiO_3$ ceramics with an excess $Bi^{3+}$ and a deficiency of $Na^+$ and $K^+$ were synthesized by a conventional solid state reaction method. The structure and morphology of $Bi_{0.5+x}(Na_{0.78}K_{0.22})_{0.5-3x}TiO_3$ ceramics were characterized by X-ray diffraction and field emission scanning electron microscopy. The electric polarization and mechanical strain induced by external electric field, and the temperature dependence of dielectric constant were investigated. These results demonstrated that an ergodic relaxor phase can be induced by controls of the mole ratio of $Bi^{3+}$, $Na^+$ and $K^+$. A phase boundary between non-ergodic and ergodic relaxor phases can be observed at ambient temperature. The ergodic relaxor phase can be transferred to the ferroelectric phase by application of the electric field. The stability of the induced ferroelectric phases strongly depends on the mole ratio of $Bi^{3+}$, $Na^+$ and $K^+$. The maximum strain of 0.31% was observed in $Bi_{0.51}(Na_{0.78}K_{0.22})_{0.47}TiO_3$ ceramics sintered at $1,150^{\circ}C$ for 2 h.

Property of Nickel Silicide with 60 nm and 20 nm Hydrogenated Amorphous Silicon Prepared by Low Temperature Process (60 nm 와 20 nm 두께의 수소화된 비정질 실리콘에 따른 저온 니켈실리사이드의 물성 변화)

  • Kim, Joung-Ryul;Park, Jong-Sung;Choi, Young-Youn;Song, Oh-Sung
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.6
    • /
    • pp.528-537
    • /
    • 2008
  • 60 nm and 20 nm thick hydrogenated amorphous silicon(a-Si:H) layers were deposited on 200 nm $SiO_2$/single-Si substrates by inductively coupled plasma chemical vapor deposition(ICP-CVD). Subsequently, 30 nm-Ni layers were deposited by an e-beam evaporator. Finally, 30 nm-Ni/(60 nm and 20 nm) a-Si:H/200 nm-$SiO_2$/single-Si structures were prepared. The prepared samples were annealed by rapid thermal annealing(RTA) from $200^{\circ}C$ to $500^{\circ}C$ in $50^{\circ}C$ increments for 40 sec. A four-point tester, high resolution X-ray diffraction(HRXRD), field emission scanning electron microscopy(FE-SEM), transmission electron microscopy(TEM), and scanning probe microscopy(SPM) were used to examine the sheet resistance, phase transformation, in-plane microstructure, cross-sectional microstructure, and surface roughness, respectively. The nickel silicide from the 60 nm a-Si:H substrate showed low sheet resistance from $400^{\circ}C$ which is compatible for low temperature processing. The nickel silicide from 20 nm a-Si:H substrate showed low resistance from $300^{\circ}C$. Through HRXRD analysis, the phase transformation occurred with silicidation temperature without a-Si:H layer thickness dependence. With the result of FE-SEM and TEM, the nickel silicides from 60 nm a-Si:H substrate showed the microstructure of 60 nm-thick silicide layers with the residual silicon regime, while the ones from 20 nm a-Si:H formed 20 nm-thick uniform silicide layers. In case of SPM, the RMS value of nickel silicide layers increased as the silicidation temperature increased. Especially, the nickel silicide from 20 nm a-Si:H substrate showed the lowest RMS value of 0.75 at $300^{\circ}C$.

Preliminary Study of Heavy Minerals in the Central Yellow Sea Mud (황해중앙이질대 퇴적물에 대한 중광물 예비 연구)

  • Lee, Bu Yeong;Cho, Hyen Goo;Kim, Soon-Oh;Yi, Hi Il
    • Journal of the Mineralogical Society of Korea
    • /
    • v.29 no.1
    • /
    • pp.1-10
    • /
    • 2016
  • We studied the heavy minerals in 46 surface sediments collected from the Central Yellow Sea Mud (CYSM) to characterize the type, abundance, mineralogical properties and distribution pattern using the stereo-microscopy, field-Emission scanning electron microscopy (FE SEM) and chemical analysis through the energy dispersive spectrometer (EDS). Heavy mineral assemblages are primarily composed of epidote group, amphibole group, garnet group, zircon, rutile and sphene in descending order. Epidote group and amphibole group minerals account for more than 50% of total heavy minerals. The minerals in epidote group, amphibole group and garnet group in studied area are epidote, edenite and almandine, respectively. When we divided the CYSM into two regions by $124^{\circ}E$, the eastern region contain higher contents of epidote and (zircon + rutile), which are more resistant to weathering but lower of amphibole, which is less resistant to weathering than the western region. Based on this results, it is possible to estimate that the eastern region sediments are transported for a long distance while western region sediments are transported for a short distance from the source area. In the future, the additional study on the heavy minerals in river sediments flowing into the Yellow Sea and much more samples for marine sediments must be carried out to interpret exactly the provenance and sedimentation process.

Fine Structural Analysis of the Attachment Devices in the Jumping Spider Plexippus setipes (깡충거미 표면 접착장치의 미세구조 분석)

  • Moon, Myung-Jin;Park, Jong-Gu
    • Applied Microscopy
    • /
    • v.39 no.2
    • /
    • pp.149-156
    • /
    • 2009
  • Fine structure of the dry adhesion system in the tarsal appendages of the jumping spider Plexippus setipes (Araneae: Salticidae) with examined using field emission scanning electron microscope (FESEM). The jumping spiders have the distinctive attachment apparatus for adhesion on smooth dry surface without sticky fluids. They attach to rough substrates using tarsal claws, however attachment on smooth surfaces is achieved by means of a tuft-like hair called a scopula. All eight legs have the scopulae with a pair of claws on the tip of feet, and each scopula is composed of two groups of setae that are capable of dry adhesion on smooth surface. The apex of each seta is flattened pad bearing many specialized adhesive setules on one side. The cuticular sensillae are interspersed at the dorsal surface of the seta. It has been revealed by this research that the contact area of the setule is always a triangular shape, and these cuticular surfaces are connected by the elongated stalks from the underlying setae. Moreover, adhesion between the numerous setules and the setae was prevented by the microscopic hairs, since these were interspersed on the upper side of the setae.