Browse > Article
http://dx.doi.org/10.3740/MRSK.2010.20.5.262

Effects of Growth Conditions on Properties of ZnO Nanostructures Grown by Hydrothermal Method  

Cho, Min-Young (Department of Nano Systems Engineering, Inje University)
Kim, Min-Su (Department of Nano Systems Engineering, Inje University)
Kim, Ghun-Sik (Department of Nano Systems Engineering, Inje University)
Choi, Hyun-Young (Department of Nano Systems Engineering, Inje University)
Jeon, Su-Min (Department of Nano Systems Engineering, Inje University)
Yim, Kwang-Gug (Department of Nano Systems Engineering, Inje University)
Lee, Dong-Yul (Samsung LED)
Kim, Jin-Soo (Division of Advanced Materials Engineering, Chonbuk National University)
Kim, Jong-Su (Department of Physics, Yeungnam University)
Lee, Joo-In (Advanced Instrument Technology Center, Korea Research Institute of Standards and Science)
Leem, Jae-Young (Department of Nano Systems Engineering, Inje University)
Publication Information
Korean Journal of Materials Research / v.20, no.5, 2010 , pp. 262-266 More about this Journal
Abstract
ZnO nanostructures were grown on an Au seed layer by a hydrothermal method. The Au seed layer was deposited by ion sputter on a Si (100) substrate, and then the ZnO nanostructures were grown with different precursor concentrations ranging from 0.01 M to 0.3M at $150^{\circ}C$ and different growth temperatures ranging from $100^{\circ}C$ to $250^{\circ}C$ with 0.3 M of precursor concentration. FE-SEM (field-emission scanning electron microscopy), XRD (X-ray diffraction), and PL (photoluminescence) were carried out to investigate the structural and optical properties of the ZnO nanostructures. The different morphologies are shown with different growth conditions by FE-SEM images. The density of the ZnO nanostructures changed significantly as the growth conditions changed. The density increased as the precursor concentration increased. The ZnO nanostructures are barely grown at $100^{\circ}C$ and the ZnO nanostructure grown at $150^{\circ}C$ has the highest density. The XRD pattern shows the ZnO (100), ZnO (002), ZnO (101) peaks, which indicated the ZnO structure has a wurtzite structure. The higher intensity and lower FWHM (full width at half maximum) of the ZnO peaks were observed at a growth temperature of $150^{\circ}C$, which indicated higher crystal quality. A near band edge emission (NBE) and a deep level emission (DLE) were observed at the PL spectra and the intensity of the DLE increased as the density of the ZnO nanostructures increased.
Keywords
zinc oxide; hydrothermal method; growth temperature; precursor concentration;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 J. M. Jang, J. Y. Kim and W. G. Jung, Thin Solid Films, 516, 8524 (2008).   DOI   ScienceOn
2 S. J. Kim, H. H. Kim, J. B. Kwon, J. G. Lee, B. H. O, S. G. Lee, E. H. Lee and S. G. Park, Microelectron. Eng., 87, 1534 (2010).   DOI   ScienceOn
3 L. Vayssieres, K. Keis, A. Hagfeldt and S.-E. Lindquist, Chem. Mater., 13(12), 4395 (2001).   DOI   ScienceOn
4 Y. Chen, D. M. Bagnall, H. Koh, K. Park, K. Hiraga, Z. Zhu and T. Yao, J. Appl. Phys., 84(7), 3912 (1998).   DOI   ScienceOn
5 H. Zhou, M. Wissinger, J. Fallert, R. Hauschild, F. Stelzl, C. Klingshirn and H. Kalt, Appl. Phys. Lett., 91, 181112 (2007).   DOI   ScienceOn
6 C. J. Lee, T. J. Lee, S. C. Lyu, Y. Zhang, H. Ruh and H. J. Lee, Appl. Phys. Lett., 81(19), 3648 (2002).   DOI   ScienceOn
7 D. H. Levy, D. Freeman, S. F. Nelson, P. J. Cowdery- Corvan and L. M. Irving, Appl. Phys. Lett., 92, 192101 (2008).   DOI   ScienceOn
8 J. J. Wu and S. C. Liu, Adv. Mater., 14(3), 215 (2002).   DOI   ScienceOn
9 M. Qiu, Z. Ye, J. Lu, H. He, J. Huang, L. Zhu and B. Zhao, Appl. Surf. Sci., 255, 3972 (2009).   DOI   ScienceOn
10 Y. W. Heo, L. C. Tien, D. P. Norton, B. S. Kang, F. Ren, B. P. Gila and S. J. Peaton, Appl. Phys. Lett., 85(11), 2002 (2003).
11 S. K. Han, S. K. Hong, H. Kim, J. W. Lee and J. Y. Lee, Kor. J. Mater. Res., 16(6), 360 (2006) (in Korean).   DOI   ScienceOn
12 X. M. Fan, J. S. Lian, Z. X. Guo and H. J. Lu, Appl. Surf. Sci., 239, 176 (2005).   DOI   ScienceOn
13 E. Guziewicz, I. A. Kowalik, M. Godlewski, K. Kopalko, V. Ojoursinniy, A. Wojcik, S. Yatsunenko, E. Lusakowska, W. Paszkowicz and M. Guziewicz, J. Appl. Phys., 103, 033515 (2008).   DOI   ScienceOn
14 M. S. Wang, E. J. Kim, J. S. Chung, E. W. Shin, S. H. Hahn, K. E. Lee and C. H. Park, Phys. Stat. Sol. (a), 203(10), 2418 (2006).   DOI   ScienceOn
15 S. Li, S. Zhou, H. Liu, Y. Hang, C. Xia, J. Xu, S. Gu and R. Zhang, Mater. Lett., 61, 30 (2007).   DOI   ScienceOn
16 L. E. Greene, M. Law, H. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally and P. Yang, Angew. Chem. Int. Ed., 42, 3031 (2003).   DOI   ScienceOn
17 S. A. Studeninkin, N. Golego and M. Cocivera, J. Appl. Phys., 84(4), 2287 (1998).   DOI   ScienceOn
18 X. L. Wu, G. G. Siu, C. L. Fu and H. C. Ong, Appl. Phys. Lett., 78(16), 2285 (2001).   DOI   ScienceOn
19 A. B. Djurisic, Y. H. Leung, K. H. Tam, Y. F. Hsu, L. Ding, W. K. Ge, Y. C. Zhong, K. S. Wong, W. K. Chan, H. L. Tam, K. W. Cheah, W. M. Kwok and D. L. Phillips, Nanotechnology, 18, 095702 (2007).   DOI   ScienceOn
20 S. O’Brken, L. H. K. Koh and G. M. Crean, Thin Solid Films, 516, 1391 (2008).   DOI   ScienceOn