• Title/Summary/Keyword: field-emission scanning electron microscopy

Search Result 686, Processing Time 0.025 seconds

Ion release and Biocompatibility of Ti-6Al-4V Alloys for Dental application

  • Kang, Jung-In;Son, Mee-Kyoung;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.303-303
    • /
    • 2015
  • In order to investigate ion release and biocompatibility of Ti-6Al-4V dental alloy by electrochemical corrosion test and MTT assay, commercial Ti-6Al-4V alloy rod (99.99% Ti, USA, Co) were used in the study. The microstructure of the alloys was examined by optical microscopy (OM), Field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), MTT assay, and corrosion test. From the polarization curves, very low current densities were obtained for Ti-6Al-4V alloys, indicating a formation of stable passive layer.

  • PDF

Effect of Collector Temperature on the Porous Structure of Electrospun Fibers

  • Kim Chi Hun;Jung Yoon Ho;Kim Hak Yong;Lee Douk Rae;Dharmaraj Nallasamy;Choi Kyung Eun
    • Macromolecular Research
    • /
    • v.14 no.1
    • /
    • pp.59-65
    • /
    • 2006
  • We report a new approach to fabricate electrospun polymer nonwoven mats with porous surface morphology by varying the collector temperature during electrospinning. Polymers such as poly(L-lactide) (PLLA), polystyrene (PS), and poly(vinyl acetate) (PVAc) were dissolved in volatile solvents, namely methylene chloride (Me) and tetrahydrofuran (THF), and subjected to electrospinning. The temperature of the collector in the electrospinning device was varied by a heating system. The resulting nonwoven mats were characterized by using scanning electron microscopy (SEM), field emission SEM (FESEM), and atomic force microscopy (AFM). We observed that the surface morphology, porous structure, and the properties such as pore size, depth, shape, and distribution of the nonwoven mats were greatly influenced by the collector temperature.

Electrochemical Behavior and Biocompatibility of Co-Cr Dental Alloys

  • Kang, Jung-In;Yoon, Jun-Bin;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.05a
    • /
    • pp.107-107
    • /
    • 2015
  • In order to investigate electrochemical behavior and biocompatibility of Co-Cr dental alloy by electrochemical corrosion test and MTT assay, the xCo-25Cr-yW-zNi alloys were used in this study. Samples of Co-Cr-W-Ni alloys were manufactured using arc melting furnace. The microstructure of the alloys was examined by optical microscopy (OM), Field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), MTT assay, and corrosion test. Corrosion resistance increased slightly as cobalt (Co) content increased. And bioactivity was concerned with nickel (Ni) and tungsten (W). Biocompatibility of Co-Cr alloy depended on Ni and W contents.

  • PDF

Relationship between inductively coupled plasma and crystal structure, mechanical and electrical properties of MoN coatings (유도결합 플라즈마 파워에 따른 MoN 코팅막의 결정구조 및 기계·전기적 특성 변화)

  • Jang, Hoon;Chun, Sung-Yong
    • Journal of Surface Science and Engineering
    • /
    • v.55 no.2
    • /
    • pp.77-83
    • /
    • 2022
  • Nanocrystalline MoN coatings were prepared by inductively coupled plasma magnetron sputtering (ICPMS) changing the plasma power from 0 W to 200 W. The properties of the coatings were analyzed by x-ray diffraction, field emission scanning electron microscopy, atomic force microscopy, nanoindentation tester and semiconductor characterization system. As the ICP power increases, the crystal structure of the MoN coatings changed from a mixed phase of γ-Mo2N and α-Mo to a single phase γ-Mo2N. MoN coatings deposited by ICPMS at 200 W showed the most compact microstructure with the highest nanoindentation hardness of 27.1 GPa. The electrical resistivity of the coatings decreased from 691.6 μΩ cm to 325.9 μΩ cm as the ICP power increased.

The Effect of Crystallinity on the Photoluminescence of TiO2 Nanoparticles (결정성에 따른 TiO2 나노입자의 포토루미네선스 영향)

  • Han, Wooje;Park, Hyung-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.1
    • /
    • pp.23-28
    • /
    • 2019
  • The Titanium oxide ($TiO_2$) is an attractive ceramic material which shows non-toxic, high refractive index, catalytic activity and biocompatibility, and can be fabricated at a low cost due to its high chemical stability and large anisotropy. $TiO_2$ nanoparticles have been prepared by sol-gel method. The pH of solution can affect the $TiO_2$ crystallinity during the formation of nanoparticles. The prepared nanoparticles were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction, photoluminescence spectroscopy in order to investigate their structural and photoluminescence properties. Through these analysis, the size of $TiO_2$ nanoparticles were found to be smaller than 5 nm. As the crystallinity of the nanoparticles increased, the emission of PL in the 550 nm region increased. Therefore, luminescence characteristics can be improved by controlling the crystallinity of the $TiO_2$ nanoparticles.

Fabrication of Waterproof and Moisture-permeable Polyurethane Nanofiber Multi-Membrane (투습방수성 Polyurethane 나노섬유 Multi-Membrane의 제조)

  • Yang, Jeong-Han;Yoon, Nam-Sik;Kim, In-Kyo;Yeum, Jeong-Hyun
    • Textile Coloration and Finishing
    • /
    • v.23 no.2
    • /
    • pp.107-117
    • /
    • 2011
  • Polyurethane (PU) was synthesized by one-shot process and the PU nanofiber was prepared by electrospinning. In this study, electrospun PU multi-membranes were prepared with various coating thickness ratio of base resin to top resin, where the base resin contains melamine curing agent and acid catalyst and the top resin contains water-repellent agent of fluoro-carbon compounds. The PU nanofiber multi-membranes were analyzed by field-emission scanning electron microscopy, differential scanning calorimeter, breathability, tensile strenth, air permeability and water resistance. The results showed that the PU multi-membrane provided excellent waterproof and moisture permeability.

Design and Preparation of Cathode for Large Sputtering Thin Film (대면적 스퍼터링 박막 제작을 위한 캐소드 설계 및 제작)

  • Kim, Yujin;Kim, Sangmo;Kim, Kyung Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.2
    • /
    • pp.53-57
    • /
    • 2019
  • In this study, we prepared sputtering cathode for large sputtering thin film in the facing targets sputtering(FTS) system. Before fabrication of cathode equipment, we investigated optimal magnetic flux in the sputtering cathode by using magnetic field stimulation(Comsol). According to the result of magnetic field stimulation, we manufactured the cathode. After we mounted laboratory-designed cathode on FTS system, the discharge properties were observed in vacuum condition. In addition, ITO films were deposited on glass substrate and their electrical and optical properties were investigated by various measurements (four-point probe, UV-VIS spectrometer, field emission scanning electron microscopy(FE-SEM), Hall-effect measurement).

External rf plasma treatment effect on multi-wall carbon nanotubes grown inside anodic alumina nanoholes at low deposition temperatures

  • Ahn, Kyoung-Soo;Kim, Jun-Sik;Kim, Eun-Kyu;Kim, Chae-Ok;Hong, Jin-Pyo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.692-693
    • /
    • 2002
  • Well-aligned multi-wall carbon nanotubes (MWNTs) were fabricated by utilizing a radio frequency plasma-enhanced chemical vapor deposition (rf-PECVD) system from Ni particles at the bottom of anodic alumina nanoholes (AAN). To remove the amorphous graphite layers on the AAN surface and to eliminate the protrusion of MWNT tips, the AAN surface with MWNTs were treated by external rf plasma source. As a result, the AAN surface almost became flat without having any protrusion of MWNT tips. The diameter, length of MWNTs and AAN were investigated by using a scanning electron microscopy (SEM). Raman spectroscopy was also used to characterize wall structure of the carbon nanotube. And the emission properties of the MWNTs were measured for the application of field emission display (FED) in near future.

  • PDF

Effect of Chamber Pressure on the Microstructure of Fe Nano Powders Synthesized by Plasma Arc Discharge Process (플라즈마 아크 방전법으로 제조된 Fe 나노분말의 미세조직에 미치는 챔버압력 영향)

  • 박우영;윤철수;김성덕;유지훈;오영우;최철진
    • Journal of Powder Materials
    • /
    • v.11 no.4
    • /
    • pp.328-332
    • /
    • 2004
  • Fe nanopowders were successfully synthesized by plasma arc discharge (PAD) process using Fe rod. The influence of chamber pressure on the microstructure was investigated by means of X-ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FE-SEM), Transmission Electron Microscopy (TEM) and X-ray Photoelectron Spectroscopy (XPS). The prepared particles had nearly spherical shapes and consisted of metallic cores (a-Fe) and oxide shells (Fe$_{3}$O$_{4}$), The powder size increased with increasing chamber pressure due to the higher dissolution and ejection rate of H$_2$ and gas density in the molten metal.

Improvement in ammonia gas sensing behavior by polypyrrole/multi-walled carbon nanotubes composites

  • Jang, Woo-Kyung;Yun, Ju-Mi;Kim, Hyung-Il;Lee, Young-Seak
    • Carbon letters
    • /
    • v.13 no.2
    • /
    • pp.88-93
    • /
    • 2012
  • Polypyrrole (PPy)/multi-walled carbon nanotubes (MWCNTs) composites were prepared by in situ polymerization of pyrrole on the surface of MWCNTs templates to improve the ammonia gas sensing properties. PPy morphologies, formed on the surface of MWCNTs, were investigated by field emission scanning electron microscopy. The thermal stabilities of the PPy/MWCNTs composites were improved as the content of MWCNTs increased due to the higher thermal stability of the MWCNTs. PPy/MWCNTs composites showed synergistic effects in improving the ammonia gas sensing properties, attributed to the combination of efficient electron transfer between PPy/MWCNTs composites and ammonia gas, and the reproducible electrical resistance variation on PPy during the gas sensing process.