Browse > Article
http://dx.doi.org/10.5714/CL.2012.13.2.088

Improvement in ammonia gas sensing behavior by polypyrrole/multi-walled carbon nanotubes composites  

Jang, Woo-Kyung (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University)
Yun, Ju-Mi (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University)
Kim, Hyung-Il (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University)
Lee, Young-Seak (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University)
Publication Information
Carbon letters / v.13, no.2, 2012 , pp. 88-93 More about this Journal
Abstract
Polypyrrole (PPy)/multi-walled carbon nanotubes (MWCNTs) composites were prepared by in situ polymerization of pyrrole on the surface of MWCNTs templates to improve the ammonia gas sensing properties. PPy morphologies, formed on the surface of MWCNTs, were investigated by field emission scanning electron microscopy. The thermal stabilities of the PPy/MWCNTs composites were improved as the content of MWCNTs increased due to the higher thermal stability of the MWCNTs. PPy/MWCNTs composites showed synergistic effects in improving the ammonia gas sensing properties, attributed to the combination of efficient electron transfer between PPy/MWCNTs composites and ammonia gas, and the reproducible electrical resistance variation on PPy during the gas sensing process.
Keywords
ammonia; polypyrrole; multi-walled carbon nanotube; composite; gas sensor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Singh V, Mohan S, Singh G, Pandey PC, Prakash R. Synthesis and characterization of polyaniline-carboxylated PVC composites: application in development of ammonia sensor. Sensors Actuators B: Chem, 132, 99 (2008). http://dx.doi.org/10.1016/j.snb.2008.01.007.   DOI   ScienceOn
2 Kodjie SL, Li L, Li B, Cai W, Li CY, Keating M. Morphology and crystallization behavior of HDPE/CNT nanocomposite. J Macromol Sci B, 45, 231 (2006). http://dx.doi.org/10.1080/00222340500522299.   DOI   ScienceOn
3 Mohammad F, Calvert P, Billingham N. Thermal stability of electrochemically prepared polythiophene and polypyrrole. Bull Mater Sci, 18, 255 (1995). http://dx.doi.org/10.1007/bf02749663.   DOI
4 Wang SG, Zhang Q, Yang DJ, Sellin PJ, Zhong GF. Multi-walled carbon nanotube-based gas sensors for $NH_{3}$ detection. Diamond Relat Mater, 13, 1327 (2004). http://dx.doi.org/10.1016/j.diamond.2003.11.070.   DOI   ScienceOn
5 Bhat NV, Gadre AP, Bambole VA. Structural, mechanical, and electrical properties of electropolymerized polypyrrole composite films. J Appl Polym Sci, 80, 2511 (2001). http://dx.doi. org/10.1002/app.1359.   DOI   ScienceOn
6 Yoon H, Chang M, Jang J. Sensing behaviors of polypyrrole nanotubes prepared in reverse microemulsions: effects of transducer size and transduction mechanism. J Phys Chem B, 110, 14074 (2006). http://dx.doi.org/10.1021/jp061423b.   DOI   ScienceOn
7 Hughes M, Shaffer MSP, Renouf AC, Singh C, Chen GZ, Fray DJ, Windle AH. Electrochemical capacitance of nanocomposite films formed by coating aligned arrays of carbon nanotubes with polypyrrole. Adv Mater, 14, 382 (2002). http://dx.doi.org/10.1002/1521-4095(20020304)14:5<382::aid-adma382>3.0.co;2-y.   DOI   ScienceOn
8 Rahman SU, Abul-Hamayel MA, Aleem BJA. Electrochemically synthesized polypyrrole films as primer for protective coatings on carbon steel. Surf Coat Technol, 200, 2948 (2006). http://dx.doi. org/10.1016/j.surfcoat.2005.04.012.   DOI   ScienceOn
9 Gardner JW, Bartlett PN. Application of conducting polymer technology in microsystems. Sensors Actuators A: Physical, 51, 57 (1995). http://dx.doi.org/10.1016/0924-4247(95)85004-x.   DOI   ScienceOn
10 Mazzoldi A, Della Santa A, De Rossi D. Conducting polymer actuators: properties and modeling. In: Osada Y, De Rossi DE, eds. Polymer Sensors and Actuators, Springer, Berlin, Germany, 207 (2000).
11 Hagleitner C, Hierlemann A, Lange D, Kummer A, Kerness N, Brand O, Baltes H. Smart single-chip gas sensor microsystem. Nature, 414, 293 (2001). http://dx.doi.org/10.1038/35104535.   DOI   ScienceOn
12 Arami H, Mazloumi M, Khalifehzadeh R, Emami SH, Sadrnezhaad SK. Polypyrrole/multiwall carbon nanotube nanocomposites electropolymerized on copper substrate. Mater Lett, 61, 4412 (2007). http://dx.doi.org/10.1016/j.matlet.2007.02.015.   DOI   ScienceOn
13 Song HK, Toste B, Ahmann K, Hoffman-Kim D, Palmore GTR. Micropatterns of positive guidance cues anchored to polypyrrole doped with polyglutamic acid: a new platform for characterizing neurite extension in complex environments. Biomaterials, 27, 473 (2006). http://dx.doi.org/10.1016/j.biomaterials.2005.06.030.   DOI   ScienceOn
14 Kauffman DR, Star A. Carbon nanotube gas and vapor sensors. Angew Chem Int Ed, 47, 6550 (2008). http://dx.doi.org/10.1002/anie.200704488.   DOI   ScienceOn
15 Im JS, Kim JG, Lee YS. Fluorination effects of carbon black additives for electrical properties and EMI shielding efficiency by improved dispersion and adhesion. Carbon, 47, 2640 (2009). http:// dx.doi.org/10.1016/j.carbon.2009.05.017.   DOI   ScienceOn
16 Makeiff DA, Huber T. Microwave absorption by polyaniline- carbon nanotube composites. Synth Met, 156, 497 (2006). http:// dx.doi.org/10.1016/j.synthmet.2005.05.019.   DOI   ScienceOn
17 Dimitrakopoulos CD, Malenfant PRL. Organic thin film transistors for large area electronics. Adv Mater, 14, 99 (2002). http://dx.doi.org/10.1002/1521-4095(20020116)14:2<99::aidadma99> 3.0.co;2-9.   DOI   ScienceOn
18 Kraft A, Grimsdale AC, Holmes AB. Electroluminescent conjugated polymers-seeing polymers in a new light. Angew Chem Int Ed, 37, 402 (1998). http://dx.doi.org/10.1002/(sici)1521- 3773(19980302)37:4<402::aid-anie402>3.0.co;2-9.   DOI   ScienceOn
19 Huynh WU, Dittmer JJ, Alivisatos AP. Hybrid nanorod-polymer solar cells. Science, 295, 2425 (2002). http://dx.doi.org/10.1126/science.1069156.   DOI   ScienceOn
20 Sun B, Marx E, Greenham NC. Photovoltaic devices using blends of branched CdSe nanoparticles and conjugated polymers. Nano Lett, 3, 961 (2003). http://dx.doi.org/10.1021/nl0342895.   DOI   ScienceOn
21 Hayakawa I, Iwamoto Y, Kikuta K, Hirano S. Gas sensing properties of platinum dispersed-TiO2 thin film derived from precursor. Sensors Actuators B: Chem, 62, 55 (2000). http://dx.doi. org/10.1016/s0925-4005(99)00303-2.   DOI   ScienceOn
22 Argun AA, Cirpan A, Reynolds JR. The first truly all-polymer electrochromic devices. Adv Mater, 15, 1338 (2003). http://dx.doi. org/10.1002/adma.200305038.   DOI   ScienceOn
23 Crone B, Dodabalapur A, Lin YY, Filas RW, Bao Z, LaDuca A, Sarpeshkar R, Katz HE, Li W. Large-scale complementary integrated circuits based on organic transistors. Nature, 403, 521 (2000). http://dx.doi.org/10.1038/35000530.   DOI   ScienceOn
24 Kim HK, Kim MS, Chun SY, Park YH, Jeon BS, Lee JY, Hong YK, Joo J, Kim SH. Characteristics of electrically conducting polymercoated textiles. Mol Cryst Liq Cryst, 405, 161 (2003). http://dx.doi. org/10.1080/15421400390263550.   DOI   ScienceOn
25 Mbarek H, Saadoun M, Bessaïs B. Screen-printed Tin-doped indium oxide (ITO) films for $NH_{3}$ gas sensing. Mater Sci Eng C, 26, 500 (2006). http://dx.doi.org/10.1016/j.msec.2005.10.037   DOI   ScienceOn
26 Wang X, Miura N, Yamazoe N. Study of $WO_{3}$-based sensing materials for $NH_{3}$ and NO detection. Sensors Actuators B: Chem, 66, 74 (2000). http://dx.doi.org/10.1016/S0925-4005(99)00410-4.   DOI   ScienceOn
27 Patil DR, Patil LA, Patil PP. $Cr_{2}O_{3}$-activated ZnO thick film resistors for ammonia gas sensing operable at room temperature. Sensors Actuators B: Chem, 126, 368 (2007). http://dx.doi. org/10.1016/j.snb.2007.03.028.   DOI   ScienceOn
28 Tran TH, Kwon JH, Lee KS, Lee JW, Ju BK. pH sensor using carbon nanotubes as sensing material. First International Conference on Communications and Electronics, Hanoi, Vietnam, 490 (2006). http://dx.doi.org/10.1109/CCE.2006.350876.
29 de Souza JEG, dos Santos FL, Barros-Neto B, dos Santos CG, de Melo CP. Polypyrrole thin films gas sensors. Synth Met, 119, 383 (2001). http://dx.doi.org/10.1016/s0379-6779(00)01051-1.   DOI   ScienceOn
30 Lange U, Roznyatovskaya NV, Mirsky VM. Conducting polymers in chemical sensors and arrays. Anal Chim Acta, 614, 1 (2008). http://dx.doi.org/10.1016/j.aca.2008.02.068.   DOI   ScienceOn
31 Ram MK, Yavuz O, Lahsangah V, Aldissi M. CO gas sensing from ultrathin nano-composite conducting polymer film. Sensors Actuators B: Chem, 106, 750 (2005). http://dx.doi.org/10.1016/j. snb.2004.09.027.   DOI   ScienceOn
32 Albuquerque JE, Mattoso LHC, Balogh DT, Faria RM, Masters JG, MacDiarmid AG. A simple method to estimate the oxidation state of polyanilines. Synth Met, 113, 19 (2000). http://dx.doi. org/10.1016/s0379-6779(99)00299-4.   DOI   ScienceOn
33 Wang YD, Wu XH, Su Q, Li YF, Zhou ZL. Ammonia-sensing characteristics of Pt and $SiO_{2}$ doped $SnO_{2}$ materials. Solid State Electron, 45, 347 (2001). http://dx.doi.org/10.1016/S0038-1101(00)00231-8.   DOI   ScienceOn
34 Christie S, Scorsone E, Persaud K, Kvasnik F. Remote detection of gaseous ammonia using the near infrared transmission properties of polyaniline. Sensors Actuators B: Chem, 90, 163 (2003). http:// dx.doi.org/10.1016/S0925-4005(03)00036-4.   DOI   ScienceOn
35 Bendahan M, Lauque P, Lambert-Mauriat C, Carchano H, Seguin JL. Sputtered thin films of CuBr for ammonia microsensors: morphology, composition and ageing. Sensors Actuators B: Chem, 84, 6 (2002). http://dx.doi.org/10.1016/S0925-4005(02)00004-7.   DOI   ScienceOn