Effect of Collector Temperature on the Porous Structure of Electrospun Fibers

  • Kim Chi Hun (Department of Textile Engineering, Chonbuk National University) ;
  • Jung Yoon Ho (Department of Textile Engineering, Chonbuk National University) ;
  • Kim Hak Yong (Department of Textile Engineering, Chonbuk National University) ;
  • Lee Douk Rae (Department of Textile Engineering, Chonbuk National University) ;
  • Dharmaraj Nallasamy (Department of Chemistry, Government Arts College, Udumalpet) ;
  • Choi Kyung Eun (Department of Practical Art Education, Chonju National University of Education)
  • Published : 2006.02.01

Abstract

We report a new approach to fabricate electrospun polymer nonwoven mats with porous surface morphology by varying the collector temperature during electrospinning. Polymers such as poly(L-lactide) (PLLA), polystyrene (PS), and poly(vinyl acetate) (PVAc) were dissolved in volatile solvents, namely methylene chloride (Me) and tetrahydrofuran (THF), and subjected to electrospinning. The temperature of the collector in the electrospinning device was varied by a heating system. The resulting nonwoven mats were characterized by using scanning electron microscopy (SEM), field emission SEM (FESEM), and atomic force microscopy (AFM). We observed that the surface morphology, porous structure, and the properties such as pore size, depth, shape, and distribution of the nonwoven mats were greatly influenced by the collector temperature.

Keywords

References

  1. A. Ziabicki, Fundamentals of Fiber Formation: the Science of Fiber Spinning and Drawing, Wiley, New York, 1976
  2. Y. J. Ryu, H. Y. Kim, K. H. Lee, H. C. Park, and D. R. Lee, Eur. Polym. J., 39, 1883 (2003) https://doi.org/10.1016/S0014-3057(03)00096-X
  3. M. M. Hohman, M. Shin, G. C. Rutledge, and M. P. Brenner, Phys. Fluids, 13, 2221 (2001) https://doi.org/10.1063/1.1384013
  4. P. K. Baumgarten, J. Colloid Interf. Sci., 36, 71 (1971) https://doi.org/10.1016/0021-9797(71)90241-4
  5. D. H. Reneker, A. L. Yarin, H. Fong, and S. Koombhongse, J. Appl. Phys., 87, 4531 (2000) https://doi.org/10.1063/1.373532
  6. K. H. Lee, H. Y. Kim, Y. M. La, D. R. Lee, and N. H. Sung, J. Polym. Sci.; Part B: Polym. Phys., 40, 2259 (2002) https://doi.org/10.1002/polb.10293
  7. M. Bognitzki, H. Hou, M. Ishaque, T. Frese, M. Hellwig, C. Schwarte, A. Schaper, J. H. Wendorff and A. Greiner, Adv. Mater., 12, 637 (2000) https://doi.org/10.1002/(SICI)1521-4095(200005)12:9<637::AID-ADMA637>3.0.CO;2-W
  8. M. Bognitzki, W. Czado, T. Frese, A. Schaper, M. Hellwig, M. Steinhart, A. Greiner, and J. H. Wendorff, Adv. Mater., 13, 70 (2001) https://doi.org/10.1002/1521-4095(200101)13:1<70::AID-ADMA70>3.0.CO;2-H
  9. C. L. Casper, J. S. Stephens, N. G. Tassi, D. B. Chase, and J. F. Rabolt, Macromolecules, 37, 573 (2004) https://doi.org/10.1021/ma0351975
  10. S. Megelski, J. S. Stephens, D. B. Chase, and J. F. Rabolt, Macromolecules, 35, 8456 (2002) https://doi.org/10.1021/ma020444a
  11. D. H. Reneker and I. Chun, Nanotechnology, 36, 169 (1997)
  12. C. J. Buchko, L. C. Chen, Y. Shen, and D. C. Martin, Polymer, 40, 7397 (1999) https://doi.org/10.1016/S0032-3861(98)00866-0
  13. L. Huang, R. A. McMillan, R. P. Apkarian, B. Pourdeyhimi, V. P. Conticello, and E. L. Chaikof, Macromolecules, 33, 2989 (2000) https://doi.org/10.1021/ma991858f
  14. L. Huang, K. Nagapudi, R. P. Apkarian, and E. L. Chaikof, J. Biomater. Sci. Polym. Ed., 12, 979 (2001) https://doi.org/10.1163/156856201753252516
  15. J. D. Stitzel, G. L. Bowlin, K. Mansfield, G. E. Wnek, and D. G. Simpson, Int. SAMPE Tech. Conf., 32, 205 (2000)
  16. E. D. Boland, G. E. Wnek, D. G. Simpson, K. J. Pawlowski, and G. L. Bowlin, J. Macromol. Sci. Pure Appl. Chem., A38, 1231 (2001) https://doi.org/10.1081/MA-100108380
  17. X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao, and B. Chu, Polymer, 43, 4403 (2002) https://doi.org/10.1016/S0032-3861(02)00275-6
  18. K. Nagapudi, W. T. Brinkman, J. E. Leisen, L. Huang, R. A. McMillan, R. P. Apkarian, V. P. Conticello, and E. L. Chaikof, Macromolecules, 35, 1730 (2002) https://doi.org/10.1021/ma011429t
  19. J. A. Matthews, G. E. Wnek, D. G. Simpson, and G. L. Bowlin, Biomacromolecules, 3, 232 (2002) https://doi.org/10.1021/bm015533u
  20. W. J. Li, C. T. Laurencin, E. J. Caterson, R. S. Tuan, and F. K. Ko, J. Biomed. Mater. Res., 60, 613 (2002) https://doi.org/10.1002/jbm.10167
  21. E. R. Kenawy, J. M. Layman, J. R. Watkins, G. L. Bowlin, J. A. Matthews, S. G. Simpson, and G. E. Wnek, Biomaterials, 24, 907 (2003) https://doi.org/10.1016/S0142-9612(02)00422-2
  22. B. D. Ratner, Trends Polym. Sci., 2, 402 (1994)
  23. J. Schmidt and A. F. von Recum, Biomaterials, 13, 1059 (1992) https://doi.org/10.1016/0142-9612(92)90138-E
  24. A. Curtis and C. Wilkinson, Biomaterials, 18, 1 (1997) https://doi.org/10.1016/S0142-9612(97)90003-X
  25. E. Richter, G. Fuhr, T. MuÈller, S. Shirley, S. Rogaschewski, K. Reimer, and C. Dell, J. Mater. Sci. Mater. Med., 7, 85 (1996) https://doi.org/10.1007/BF00058719
  26. W. Liu, Z. Wu, and D. H. Reneker, Polym. Prepr., 41, 1193 (2000) https://doi.org/10.1016/S0032-3861(99)00250-5
  27. A. C. Backman and K. A. H. Lindberg, J. Appl. Polym. Sci., 91, 3009 (2004) https://doi.org/10.1002/app.13507
  28. H. Matsuyama, M. Teramoto, R. Nakatani, and T. Maki, J. Appl. Polym. Sci., 74, 171 (1999) https://doi.org/10.1002/(SICI)1097-4628(19991003)74:1<171::AID-APP21>3.0.CO;2-R